ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Postnov D. E., Nekrasov A. M. Mechanisms of phase multistability development in interacting 3D-oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 1, pp. 47-62. DOI: 10.18500/0869-6632-2005-13-1-47-62

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 106)
Language: 
Russian
Article type: 
Article
UDC: 
537.86.631.373

Mechanisms of phase multistability development in interacting 3D-oscillators

Autors: 
Postnov Dmitrij Engelevich, Saratov State University
Nekrasov Aleksandr Mihajlovich, Saratov State University
Abstract: 

We study the formation of multiple synchronous states for weakly diffusively coupled 3D-oscillators. As a representative 3D-model we use the equations for generator with inertial nonlinearity. It is shown that oscillations multi-crest waveform is not the factor that solely defines the number of multiple synchronous states, but dephasing-like effects have to be taken into account.

Key words: 
Reference: 
  1. Astakhov VV, Bezruchko BP, Gulyaev YV, Seleznev EP. Multistable states of dissipatively coupled Feigenbaum systems. Sov. Tech. Phys. Lett. 1988;15(3):60–64 (in Russian).
  2. Astakhov VV, Bezruchko BP, Erastova EN, Seleznev EP. Oscillation modes and their evolution in dissipatively coupled Feigenbaum systems. Sov. Tech. Phys. 1990;60(10):19–26 (in Russian).
  3. Anishchenko VS, Vadivasova TE, Postnov DE, and Safonova MA. Synchronization of chaos. Int. J. Bifurcation Chaos Appl. Sci. Eng. 1992;2(3):633–644. DOI: 10.1142/S0218127492000756.
  4. Anishchenko VS. Dynamical Chaos – Models and Experiments: Appearance Routes and Structure of Chaos in Simple Dynamical Systems. World Scientific, Singapore; 1995. 400 p.
  5. Vadivasova TE, Sosnovtseva OV, Balanov AG, and Astakhov VV. Phase multistability of synchronous chaotic oscillations. Discrete Dynamics in Nature and Society. 2000;4(3):190125. DOI: 10.1155/S1026022600000224.
  6. Postnov DE, Vadivasova TE, Sosnovtseva OV, Balanov AG, and Mosekilde E. Role of multistability in the transition to chaotic phase synchronization. Chaos. 1999;9(1):227–232. DOI: 10.1063/1.166394.
  7. Postnov DE, Sosnovtseva OV, Nekrasov AM, Mosekilde E, and Holstein-Rathlou NH. Phase multistability of self-modulated oscillations. Phys. Rev. E. 2002;66(3):036224. DOI: 10.1103/PhysRevE.66.036224.
  8. Postnov DE, Sosnovtseva OV, Malova SY, and Mosekilde E. Complex phase dynamics in coupled bursters. Phys. Rev. E. 2003;67(1):016215. DOI: 10.1103/PhysRevE.67.016215.
  9. Sherman A. and Rinzel J. Rhythmogenic effects of weak electrotonic coupling in neuronal models. Proc. Natl. Acad. Sci. USA. 1992;89(6):2471–2474. DOI: 10.1073/pnas.89.6.2471.
  10. Han SK, Kurrer C, and Kuramoto Y. Dephasing and bursting in coupled neural oscillators. Phys. Rev. Lett. 1995;75(17):3190–3193. DOI: 10.1103/physrevlett.75.3190.
  11. Postnov D, Han SK, Kook H. Synchronization of diffusively coupled oscillators near the homoclinic bifurcation. Phys. Rev. E. 1999;60(3):2799–2807. DOI: 10.1103/physreve.60.2799.
  12. Postnov DE, Han SK. Mechanism for antiphase synchronization in neuron models. Tech. Phys. Lett. 1999;25(2):128–130. DOI: 10.1134/1.1262406.
  13. Izhikevich EM. Phase equations for relaxation oscillators. SIAM J. Appl. Math. 2000;60(5):1989–1805.
  14. Anischenko VS. Complex Vibrations in Simple Systems. Mechanisms of Occurrence, Structure and Properties of Chaos in Radiophysical Systems. Moscow: Nauka; 1990. 318 p. (in Russian).
  15. Teodorchik KF. Self-oscillating systems with inertial nonlinearity. Sov. Tech. Phys. 1946;16(7):845–854 (in Russian).
  16. Kaptsov LN, Senatorov KY. On the operation of an RC-sawtooth oscillator with an inertial active two-pole. Radio Engineering and Electronic Physics. 1964;9(10):1757 (in Russian).
  17. Kaptsov LN. The emergence of a spike mode in a non-autonomous generator with inertial nonlinearity. Radio Engineering and Electronic Physics. 1975;20(12):2496–2499 (in Russian).
  18. Kuramoto Y. Chemical Oscillations, Waves, and Turbulence. Springer-Verlag, New York; 1984. 158 p. DOI: 10.1007/978-3-642-69689-3.
  19. Park SH, Kim S, Pyo HB, and Lee S. Multistability analysis of phase locking patterns in an excitatory coupled neural system. Phys. Rev. E. 1999;60(2):2177–2181. DOI: 10.1103/physreve.60.2177.
  20. Wang XJ. Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle. Physica D. 1993;62(1–4):263–274. DOI: 10.1016/0167-2789(93)90286-A.
  21. Balanov AG, Vadivasova TE, Postnov DE, Sosnovtseva OV. Chaos synchronization bifurcation in a Rössler oscillator with harmonic action. Izvestiya VUZ. Applied Nonlinear Dynamics. 1997;5(5):31–43 (in Russian).
  22. Vadivasova TE, Balanov AG, Sosnovtseva OV, Postnov DE, and Mosekilde E. Synchronization in driven chaotic system: diagnostics and bifurcations. Phys. Lett. A. 1999;253(1–2):66–74. DOI: 10.1016/S0375-9601(99)00023-7.
Received: 
16.06.2004
Accepted: 
16.06.2004
Published: 
30.09.2005
Short text (in English):
(downloads: 75)