ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Shabunin A. V. Methods of measuring chaotic synchronization. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 5, pp. 60-69. DOI: 10.18500/0869-6632-2009-17-5-60-69

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 159)
Article type: 

Methods of measuring chaotic synchronization

Shabunin Aleksej Vladimirovich, Saratov State University

Different universal methods of calculation of index of chaotic synchronization are considered. One of the methods, which is based on mutual coherence function, is presented in more detail. Its advantages and disadvantages, sensibility to external noise and distortions are discussed. Application of the algorithm to process of destruction of complete chaotic synchronization in two coupled systems with discrete time are demonstrated.

  1. Fujisaka H, Yamada T. Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 1983;69:32–47. DOI: 10.1143/PTP.69.32.
  2. Pikovsky AS. On the interaction of strange attractors. Z. Phys. B. Condensed Matter. 1984;55(2):149–154.
  3. Anishchenko VS, Postnov DE. Effect Of The Basic Frequency Locking Of Chaotic Auto-Oscillations - Synchronization Of Strange Attractors. Technical Physics Letters. 1988;14(6):569–573.
  4. Anishchenko VS, Vadivasova TE, Postnov DE, Safonova MA. Forced and mutual synchronization of chaos. Radiotekhnika i Elektronika. 1991;36(2):338–351.
  5. Rosenblum MG, Pikovsky AS, Kurths J. Phase synchronization of chaotic oscillators. Phys Rev Lett. 1996;76(11):1804–1807. DOI: 10.1103/PhysRevLett.76.1804.
  6. Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HDI. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E. 1995;51(2):980–994. DOI: 10.1103/physreve.51.980.
  7. Rosenblum MG, Pikovsky AS, Kurths J. From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 1997;78(22):4193–4196. DOI: 10.1103/PHYSREVLETT.78.4193.
  8. Hramov AE, Koronovskii AA. An approach to chaotic synchronization. Chaos. 2004;14(3):603–610. DOI: 10.1063/1.1775991.
  9. Stratonovich RL. Selected Questions of the Theory of Fluctuations in Radio Engineering. Moscow: Sovetskoe Radio; 1961. 560 p. (in Russian).
  10. Landa PS, Rozenbljum MG. On the synchronization of chaotic self-oscillating systems. Dokl. Math. 1992;37(5):237–239.
  11. Landa PS, Rosenblum M. Synchronization and chaotization of oscillations in coupled self-oscillating systems. Appl. Mech. Reviews. 1993;46(7):414–426. DOI: 10.1115/1.3120370.
  12. Quian Quiroga R, Kraskov A, Kreuz T, Grassberger P. Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;65(4):041903. DOI: 10.1103/PhysRevE.65.041903.
  13. Schiff SJ, So P, Chang T, Burke RE, Sauer T. Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996;54(6):6708–6724. DOI: 10.1103/physreve.54.6708.
  14. Arnhold J, Grassberger P, Lehnertz K, Elger CE. A robust method for detecting interdependencies: application to intracranially recorded EEG. Physica D. 1999;134(4):419–430. DOI: 10.1016/S0167-2789(99)00140-2.
  15. Schmitz A. Measuring statistical dependence and coupling of subsystems. Phys. Rev. E. 2000;62(5):7508–7511. DOI: 10.1103/physreve.62.7508.
  16. Kramer MA, Edwards E, Soltani M, Berger MS, Knight RT, Szeri AJ. Synchronization measures of bursting data: application to the electrocorticogram of an auditory event-related experiment. Phys Rev E Stat Nonlin Soft Matter Phys. 2004;70(1):011914. DOI: 10.1103/PhysRevE.70.011914.
  17. Romano MC, Thiel M, Kurths J, von Bloh W. Multivariate recurrence plots. Phys. Lett. A. 2004;330(3-4):214–223. DOI: 10.1016/J.PHYSLETA.2004.07.066.
Short text (in English):
(downloads: 80)