ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Ivanchenko M. V. Mode localization in Fermi-Pasta-Ulam chains with arbitrary degree of nonlinearity. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 1, pp. 55-62. DOI: 10.18500/0869-6632-2011-19-1-55-62

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 341)
Article type: 
530.182, 534.1, 534.015

Mode localization in Fermi-Pasta-Ulam chains with arbitrary degree of nonlinearity

Ivanchenko Mihail Vasilevich, Lobachevsky State University of Nizhny Novgorod

q-Breathers are exact periodic solutions of nonlinear acoustic chain systems, exponentially localized in the space of normal modes. Their presence determines the energy localization in initially excited modes, the absence of thermalization and persistence of quasi-linear spectrum. In the present paper we study the influence of the order of nonlinearity γ on the localization length in the q-space, delocalization threshold and scaling of these properties with the system size. It is shown that the exponential localization holds; moreover, there exists the critical value γ = 6, above which the localization strengthens with increasing the chain length. Accordingly, in case of mixed order nonlinearities thermalization/strong chaos thresholds in large systems are determined by nonlinear terms with γ ≤ 6 only. 

  1. Fermi E, Pasta J, and Ulam S. Los Alamos Report LA-1940; 1955. Also in: Segre E, editor. Collected Papers of Enrico Fermi. Vol. 2. University of Chicago Press; 1965. P. 978; Mattis DC, editor. Many-Body Problems. Singapore: World Scientific; 1993.
  2. Ford J. The Fermi–Pasta–Ulam problem: Paradox turns discovery. Phys. Rep. 1992;213(5):271–310. DOI: 10.1016/0370-1573(92)90116-H.
  3. Campbell DK. The Fermi–Pasta–Ulam problem – The first fifty years. Chaos. 2005;15(1):015101. DOI: 10.1063/1.1889345.
  4. Berman GP, and Izrailev FM. The Fermi–Pasta–Ulam problem: Fifty years of progress. Chaos. 2005;15(1):015104. DOI: 10.1063/1.1855036.
  5. Zabusky NJ, and Kruskal MD. Interaction of «solitons» in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 1965;15(6):240–243. DOI: 10.1103/PhysRevLett.15.240.
  6. Izrailev FM, and Chirikov BV. Statistical properties of a non-linear string. Sov. Phys. Dokl. 1966;11:30–32.
  7. De Luca J, Lichtenberg AJ, and Lieberman MA. Time scale to ergodicity in the Fermi–Pasta–Ulam system. Chaos. 1995;5(1):283–297. DOI: 10.1063/1.166143.
  8. Shepelyansky DL. Low-energy chaos in the Fermi–Pasta–Ulam problem. Nonlinearity. 1997;10(5):1331–1338. DOI: 10.1088/0951-7715/10/5/017.
  9. Bocchierri P, Scotti A, Bearzi B, and Loigner A. Anharmonic chain with Lennard-Jones interaction. Phys. Rev. A. 1970;2(5):2013–2019. DOI: 10.1103/PhysRevA.2.2013.
  10. Galgani L, and Scotti A. Planck-like distributions in classical nonlinear mechanics. Phys. Rev. Lett. 1972;28(18):1173–1176. DOI: 10.1103/PhysRevLett.28.1173.
  11. Patrascioiu A. Blackbody radiation law: quantum or classical explanation? Phys. Rev. Lett. 1983;50(24):1879–1882. DOI: 10.1103/PhysRevLett.50.1879.
  12. Kantz H. Vanishing stability thresholds in the thermodynamic limit of nonintegrable conservative systems. Physica D. 1989;39(2–3):322–335. DOI: 10.1016/0167-2789(89)90014-6.
  13. Kantz H, Livi R, and Ruffo S. Equipartition thresholds in chains of anharmonic oscillators. J. Stat. Phys. 1994;76(1–2):627–643.
  14. Casetti L, Cerruti-Sola M, Pettini M, and Cohen EGD. The Fermi–Pasta–Ulam problem revisited: Stochasticity thresholds in nonlinear Hamiltonian systems. Phys. Rev. E. 1997;55(6):6566–6574. DOI: 10.1103/PhysRevE.55.6566.
  15. Flach S, Ivanchenko MV, and Kanakov OI. q-Breathers and the Fermi–Pasta–Ulam problem. Phys. Rev. Lett. 2005;95(6):064102. DOI: 10.1103/PhysRevLett.95.064102.
  16. Flach S, Ivanchenko MV, and Kanakov OI. q-breathers in Fermi–Pasta–Ulam chains: Existence, localization, and stability. Phys. Rev. E. 2006;73(3):036618. DOI: 10.1103/PhysRevE.73.036618.
  17. Ivanchenko MV et al. q-Breathers in finite two- and three-dimensional nonlinear acoustic lattices. Phys. Rev. Lett. 2006;97(2):025505. DOI: 10.1103/PhysRevLett.97.025505.
  18. Mishagin KG et al. q-breathers is discrete nonlinear Schroedinger lattices. New J. Phys. 2008;10:073034. DOI: 10.1088/1367-2630/10/7/073034.
  19. Nguenang JP, Pinto RA, Flach S. Quantum q-breathers in a finite Bose–Hubbard chain: The case of two interacting bosons. Phys. Rev. B. 2007;75(21):214303. DOI: 10.1103/PhysRevB.75.214303.
  20. Ivanchenko MV. q-Breathers in finite lattices: nonlinearity and weak disorder. Phys. Rev. Lett. 2009;102(17):175507. DOI: 10.1103/PhysRevLett.102.175507.
  21. Ivanchenko MV. q-Breathers in discrete nonlinear Schroedinger arrays with weak disorder. JETP Letters. 2009;89(3):150–155. DOI: 10.1134/S0021364009030114.
  22. Ekinci KL, Roukes ML. Nanoelectromechanical systems. Rev. Sci. Instr. 2005;76(6):061101. DOI: 10.1063/1.1927327.
  23. Li M, Tang HX, and Roukes ML. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotech. 2007;2(2):114–120. DOI: 10.1038/nnano.2006.208.
  24. Sato M, Habbard BE, and Sievers AJ. Nonlinear energy localization and its manipulation in micromechanical oscillator arrays. Rev. Mod. Phys. 2006;78(1):137–157. DOI: 10.1103/RevModPhys.78.137.
  25. Sato M, Sievers AJ. Visualizing intrinsic localized modes with a nonlinear micromechanical array. Low Temp. Phys. 2008;34(7):543–548. DOI: 10.1063/1.2957286.
  26. Buks E, and Roukes ML. Electrically tunable collective response in a coupled micromechanical array. J. Micromech. Sys. 2002;11(6):802–807. DOI: 10.1109/JMEMS.2002.805056.
  27. Zalalutdinov M et al. Two-dimensional array of coupled nanomechanical resonators. Appl. Phys. Lett. 2006;88(14):143504. DOI: 10.1063/1.2190448.
  28. MacKay RS, and Aubry S. Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity. 1994;7(6):1623–1644. DOI: 10.1088/0951-7715/7/6/006.
  29. Lyapunov MA. The General Problem of Stability of Motion. London: Taylor & Francis; 1992. 545 p.
Short text (in English):
(downloads: 88)