ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Ivanchenko M. V. MODE LOCALIZATION IN FERMI–PASTA–ULAM CHAINS WITH ARBITRARY DEGREE OF NONLINEARITY. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 1, pp. 55-62. DOI: 10.18500/0869-6632-2011-19-1-55-62

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 170)
Article type: 
530.182, 534.1, 534.015


Ivanchenko Mihail Vasilevich, Federal state budgetary educational institution of higher professional education Nizhny Novgorod state University named N. And.Lobachevsky

q-Breathers are exact periodic solutions of nonlinear acoustic chain systems, exponentially localized in the space of normal modes. Their presence determines the energy localization in initially excited modes, the absence of thermalization and persistence of quasi-linear spectrum. In the present paper we study the influence of the order of nonlinearity γ on the localization length in the q-space, delocalization threshold and scaling of these properties with the system size. It is shown that the exponential localization holds; moreover, there exists the critical value γ = 6, above which the localization strengthens with increasing the chain length. Accordingly, in case of mixed order nonlinearities thermalization/strong chaos thresholds in large systems are determined by nonlinear terms with γ ≤ 6 only. 

  1. Fermi E., Pasta J., and Ulam S. Los Alamos Report LA-1940, 1955; also in: Collected Papers of Enrico Fermi / Ed. E. Segre // University of Chicago Press. 1965. Vol. II. P. 978; Many-Body Problems / Ed. Mattis D.C. Singapore: World Scientific, 1993.
  2. Ford J. The Fermi–Pasta–Ulam problem: Paradox turns discovery // Phys. Rep. 1992. Vol. 213. P. 271.
  3. CHAOS. 2005. Vol. 15, No 1, Focus Issue. The Fermi–Pasta–Ulam problem – The first fifty years/ Eds. D.K. Campbell, P. Rosenau and G.M. Zaslavsky.
  4. Berman G.P. and Izrailev F.M. The Fermi–Pasta–Ulam problem: Fifty years of progress // Chaos. 2005. Vol. 15. 015104.
  5. Zabusky N.J. and Kruskal M.D. Interaction of «solitons» in a collisionless plasma and the recurrence of initial states // Phys. Rev. Lett. 1965. Vol. 15. P. 240.
  6. Izrailev F.M. and Chirikov B.V. Statistical properties of a non-linear string // Dokl. Akad. Nauk SSSR. 1966. Vol. 166. P. 57. [Soviet. Phys. Dokl. 1966. Vol. 11. P. 30].
  7. De Luca J., Lichtenberg A.J., and Lieberman M.A. Time scale to ergodicity in the Fermi–Pasta–Ulam system // Chaos. 1995. Vol. 5. P. 283.
  8. Shepelyansky D.L. Low-energy chaos in the Fermi–Pasta–Ulam problem // Nonli-nearity. 1997. Vol. 10. 1331.
  9. Bocchierri P., Scotti A., Bearzi B., and Loigner A. Anharmonic chain with Lennard-Jones interaction // Phys. Rev. A. 1970. Vol. 2. 2013; Galgani L. and Scotti A. Planck-like distributions in classical nonlinear mechanics // Phys. Rev. Lett. 1972. Vol. 28. 1173; Patrascioiu A. Blackbody Radiation Law: Quantum or classical explanation? // Phys. Rev. Lett. 1983. Vol. 50. 1879.
  10. Kantz H. Vanishing stability thresholds in the thermodynamic limit of nonintegrable conservative systems // Physica D 39, 322, 1989; Kantz H., Livi R. and Ruffo S. Equipartition thresholds in chains of anharmonic oscillators // J. Stat. Phys. 1994. Vol. 76. P. 627.
  11. Casetti L., Cerruti-Sola M., Pettini M. and Cohen E.G.D. The Fermi–Pasta–Ulam problem revisited: Stochasticity thresholds in nonlinear Hamiltonian systems // Phys. Rev. E. 1997. Vol. 55. 6566.
  12. Flach S., Ivanchenko M.V. and Kanakov O.I. q-Breathers and the Fermi–Pasta–Ulam problem // Phys. Rev. Lett. 2005. Vol. 95. 064102; Flach S., Ivanchenko M.V. and Kanakov O.I. q-breathers in Fermi–Pasta–Ulam chains: Existence, localization, and stability // Phys. Rev. E. 2006. Vol. 73. 036618.
  13. Ivanchenko M.V. et al. q-Breathers in finite two- and three-dimensional nonlinear acoustic lattices // Phys. Rev. Lett. 2006. Vol. 97. 025505; Mishagin K.G. et al. q-breathers is discrete nonlinear Schroedinger lattices // New J. Phys. 2008. Vol. 10. 073034; Nguenang J.P., Pinto R.A., Flach S. Quantum q-breathers in a finite Bose–Hubbard chain: The case of two interacting bosons // Phys. Rev. B. 2007. Vol. 75. 214303.
  14. Ivanchenko M.V. q-Breathers in finite lattices: nonlinearity and weak disorder // Phys. Rev. Lett. 2009. Vol. 102. 175507; Ivanchenko M.V. q-Breathers in discrete nonlinear Schroedinger arrays with weak disorder // Письма в ЖЭТФ. 2009. Т. 89, No 3. С. 170.
  15. Ekinci K.L., Roukes M.L. Nanoelectromechanical systems // Rev. Sci. Instr. 2005. Vol. 76. 061101; Li M., Tang H.X., and Roukes M.L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications // Nature Nanotech. 2007. Vol. 2. P. 114.
  16. Sato M., Habbard B.E., and Sievers A.J. Nonlinear energy localization and its manipulation in micromechanical oscillator arrays // Rev. Mod. Phys. 2006. Vol. 78. P. 137; Sato M., Sievers A.J. Visualizing intrinsic localized modes with a nonlinear micromechanical array // Low Temp. Phys. 2008. Vol. 34. P. 543.
  17. Buks E. and Roukes M.L. Electrically tunable collective response in a coupled micromechanical array // J. Micromech. Sys. 2002. Vol. 11. P. 802; Zalalutdinov M. et al. Two-dimensional array of coupled nanomechanical resonators // Appl. Phys. Lett. 2006. Vol. 88. 143504.
  18. MacKay R.S. and Aubry S. Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators // Nonlinearity. 1994. Vol. 7. 1623.
  19. Lyapunov M.A. The General Problem of Stability of Motion // London: Taylor & Francis, 1992.
Short text (in English):
(downloads: 48)