ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Janson N. B., Anishchenko V. S. Modelling dynamical systems on experimental data. Izvestiya VUZ. Applied Nonlinear Dynamics, 1995, vol. 3, iss. 3, pp. 112-121. DOI: 10.18500/0869-6632-1995-3-3-112-121

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Modelling dynamical systems on experimental data

Autors: 
Janson Natalia B., Lancaster University
Anishchenko Vadim Semenovich, Saratov State University
Abstract: 

An attempt is made in the work to create qualitative models of some real biological systems, i.e., isolated frog's heart, а human's heart and а blood circulation system of а white rat. Sampled one-dimensional realizations of these systems were taken as the initial data. Correlation dimensions were calculated to evaluate the embedding dimensions of the systems' attractors. 
The result of the work are the systems of ordinary differential equations which approximately discribe the dynamics of the systems under investigation.

Key words: 
Acknowledgments: 
We express our deep gratitude to Professor of the Saratov Medical University G.V. Brill for kindly providing us with the experimental implementations of the ISL, to P.I. Saparin and N.B. Igosheva for providing ECG records, to Professor of Saratov State University T.G. Anishchenko and A.N. Murashov for providing experimental implementations of the arterial pressure of a white rat. The work was partially financed by the International Science Foundation (grant RNO 000) and the Russian Foundation for Basic Natural Sciences (grant 93 - 8.2 - 10).
Reference: 
  1. Casdagli М. Nonlinear prediction of chaotic time series. Physica D. 1989;35(3):335-356. DOI: 10.1016/0167-2789(89)90074-2.
  2. Farmer JD, Sidorowich JJ. Predicting chaotic time series. Phys. Rev. Lett. 1987;59:845-848. DOI: 10.1103/PhysRevLett.59.845.
  3. Arbanel HDI, Brown R, Kadtke JB. Prediction in chaotic nonlinear systems: Methods for time series with broadband Fourier spectra. Phys. Rev. А. 1990;41(4):1782-1807. DOI: 10.1103/physreva.41.1782.
  4. Gouesbet G, Letellier С. Global vector-field reconstruction by using а multivariate polynornial L2, approximation on nets. Phys. Rev. E. 1994;49(6):4955-4972. DOI: 10.1103/physreve.49.4955.
  5. Brown R, Rulkov NF, Tracy ER. Modeling and synchronizing chaotic systems from time-series data. Phys. Rev. Е. 1994;49(5):3784-3800. DOI: 10.1103/physreve.49.3784.
  6. Packard NH, Cruichfield JP, Farmer JD, Shaw RS. Geometry from а time series. Phys. Rev. Lett. 1980;45(9):712-716. DOI: 10.1103/PhysRevLett.45.712.
  7. Mindlin GB, Solari HG, Natiello MA, Gilmore R, Hou X-J. Topological analysis of chaotic time series data from the Belousov-Zhabotinskii reaction.  Nonlinear Sci. 1991;1:147-173. DOI: 10.1007/BF01209064.
  8. Anishchenko VS. Complex Oscillations in Simple Systems. М.: Nauka; 1990. 312 p. (in Russian).
  9. Broomhead DS, King GP. Extracting qualitative dynamics from experimental data. Physica D. 1986;20(2-3):217-236. DOI: 10.1016/0167-2789(86)90031-X.
  10. Takens F. Detecting strange attractors in turbulence. In: Rand D, Young LS, editors. Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics. Vol. 898. Berlin: Springer; 1981. P. 366-381. DOI: 10.1007/BFb0091924.
  11. Parker TS, Chua LO. Practical Numerical Algorithms for Chaotic Systems. New York: Springer; 1989. 348 p. DOI: 10.1007/978-1-4612-3486-9.
  12. Bransater A, Swinney HL. Strange attractors in weakly turbulent Couette - Taylor flow. Phys. Rev. A. 1987;35(5):2207-2220. DOI: 10.1103/physreva.35.2207.
  13. Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information. Phys. Rev. А. 1986;33(2):1134-1140. DOI: 10.1103/physreva.33.1134.
  14. Liebert W, Schuster HG. Proper choice of the time delay for the analysis of chaotic time series. Phys. Lett. А. 1989;142(2-3):107-111. DOI: 10.1016/0375-9601(89)90169-2.
  15. Pawelski K, Schuster HG. Generalized dimensions and entropies from а measured time series. Phys. Rev. А. 1987;35(1):481-484. DOI: 10.1103/physreva.35.481.
  16. Atmanspacher H, Schungraber H, Voges W. Global scaling properties of chaotic attractor reconstructed from experimental data. Phys. Rev. А. 1988;37(4):1314-1322. DOI:  10.1103/physreva.37.1314.
  17. Theiler J. Estimating fractal dimension. J. Opt. Soc. Am. А. 1990;7(6):1055-1073. DOI: 10.1364/JOSAA.7.001055.
  18. Havstad JW, Ehlers CL. Attractor dimension of nonstationary dynamical systems from small data sets. Phys. Rev. А. 1989;39(2):845-853. DOI: 10.1103/physreva.39.845.
  19. Theiler J. Spurious dimension from correlation algorithms applied to limited time series data. Phys. Rev. А. 1986;34(3):2427-2432. DOI: 10.1103/physreva.34.2427.
  20. Nerenberg MAH, Essex С. Correlation dimension and systematic geometric effects. Phys. Rev. А. 1990;42(12):7065-7074. DOI: 10.1103/physreva.42.7065.
  21. Anishchenko VS, Smirnova NB. Analysis and synthesis of dynamical systems from experimental data. SPIE. 1993. Vol. 2098. P. 137.
  22. Destexhe A, Sepulchre JA, Babloyantz A. A comparative study of the experimental quantification of deterministic chaos. Phys. Lett. А. 1988;132(2-3):101-106. DOI: 10.1016/0375-9601(88)90262-9.
  23. Anishchenko VS, Safonova МА, Saparin PI. Measuring and computing complex for diagnostics of complex self-oscillation modes. Sov. J. Comm. Tech. Electron. 1992;37(3):467-479.
Received: 
19.01.1995
Accepted: 
28.08.1995
Published: 
05.04.1996