ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Sytova S. N. Models of volume free electron lasers. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 6, pp. 124-135. DOI: 10.18500/0869-6632-2012-20-6-124-135

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 168)
Language: 
Russian
Article type: 
Review
UDC: 
539.122.2

Models of volume free electron lasers

Autors: 
Sytova Svetlana Nikolaevna, Research Institute for Nuclear Problems of Belarusian State University
Abstract: 

Several mathematical models of volume free electron lasers are described with the aim of investigation of their nonlinear dynamics. This review includes models of beams of charged particles moving through spatially-periodic systems (photonic crystals). In simulation of volume free electron lasers on the base of photonic crystals made from metallic threads or foils working in the microwave range it was shown the necessity of taking into account dispersion of electromagnetic waves on resonator threads. 

Reference: 
  1. Baryshevsky VG, Feranchuk ID. Parametric beam instability of relativistic charged particles in a crystal. Phys. Lett. A. 1984;102(3):141–144. DOI: 10.1016/0375-9601(84)90799-0.
  2. Baryshevsky VG. Surface parametric radiation of relativistic particles. Dokl. Phys. 1988;299(6):1363–1366 (in Russian).
  3. Baryshevsky VG, Batrakov KG, Dubovskaya IY. Parametric (quasi-Cherenkov) X-ray free electron laser. J. Phys. D. 1991;24(8):1250–1258. DOI: 10.1088/0022-3727/24/8/005.
  4. Baryshevsky VG, Batrakov KG, Dubovskaya IY. Formation of distributed feedback in an FEL under multi-wave diffraction. Nucl. Instr. Meth. Phys. Res. A. 1995;358(1–3):493–496. DOI: 10.1016/0168-9002(94)01499-X.
  5. Baryshevsky VG, Batrakov KG, Dubovskaya IY, Sytova SN. Visible surface quasi-Cherenkov FEL. Nucl. Instr. Meth. Phys. Res. A. 1995;358(1–3):508–511. DOI: 10.1016/0168-9002(94)01550-3.
  6. Baryshevsky VG, Gurinovich AA. Spontaneous and induced parametric and Smith-Purcell radiation from electrons moving in a photonic crystal built from the metallic threads. Nucl. Instr. Meth. Phys. Res. B. 2006;252(1):92–101. DOI: 10.1016/j.nimb.2006.07.009.
  7. Baryshevsky V, Gurinovich A, Gurnevich E, Lobko A. Generation of medical X-ray and THz beams of radiation using table-top accelerators. Nuovo Cimento C. 2011;34(4):199–205. DOI: 10.1393/ncc/i2011-10940-8.
  8. Baryshevsky V. Spontaneous and induced radiation by relativistic particles in natural and photonic crystals. Crystal X-ray lasers and volume free electron lasers (VFEL). LANL eprint arXiv:physics/1101.0783v1[physics.acc-ph]. 199 p.
  9. Baryshevsky VG, Batrakov KG, Gurinovich AA et al. First lasing of a volume FEL (VFEL) at a wavelength range 4-6 mm. Nucl. Instr. Meth. Phys. Res. A. 2002;483(1–2):21–23. DOI: 10.1016/S0168-9002(02)00279-6.
  10. Baryshevsky VG, Batrakov KG, Evdokimov VA et al. Experimental observation of radiation frequency tuning in «OLSE-10» prototype of volume free electron laser. Nucl. Instr. Meth. Phys. Res. B. 2006;252(1):86–91. DOI: 10.1016/j.nimb.2006.07.029.
  11. Baryshevsky VG, Belous NA, Gurinovich AA et al. Experimental studies of Volume FELs with a photonic crystal. In: IEEE Conf. Publications. Proc. 35th Int. Conf. on Infrared, Millimeter, and Terahertz Waves. IRMMWTHz 2010. September 5-9, 2010, Rome, Italy.
  12. Baryshevsky VG, Belous NA, Gurinovich AA et al. Experimental studies of volume FELs with a photonic crystal made of foils. In: Proc. 32 Int. Conf. FEL2010. 23-27 August 2010, Malmo, Sweden. THPB18. P. 632.  
  13. Abrashin VN, Grubich AO, Sytova SN. Nonlinear stage of development of the Cherenkov instability of a relativistic electron beam. Comput. Math. Math. Phys. 1991;3(8):21–29 (in Russian).
  14. Sytova SN. A numerical method for solving a hyperbolic system with singularities. Differential Equations. 1996;32(7):995–998.
  15. Sytova SN. Finite-difference methods in problems modeling volume free electron lasers. Differential Equations. 2001;37(7):1026–1031. DOI: 10.1023/A:1011974124841.
  16. Batrakov KG, Sytova SN. Simulation of bulk free electron lasers. Comput. Math. Math. Phys. 2005;45(4):690–700 (in Russian).
  17. Batrakov KG, Sytova SN. Nonlinear analysis of quasi-Cherenkov electron beam instability in VFEL (Volume Free Electron Laser). Nonlinear Phenomena in Complex Systems. 2005;8(1):42–48.
  18. Batrakov KG, Sytova SN. Dynamics of electron beam instabilities under conditions of multiwave distributed feedback. Nonlinear Phenomena in Complex Systems. 2005;8(4):359–365.
  19. Batrakov K, Sytova S. Mathematical modeling of multiwave Volume Free Electron Laser: basic principles and numerical experiments. Mathematical Modelling and Analysis. 2006;11(1):13–22. DOI: 10.1080/13926292.2006.9637298.
  20. Sytova S. Some aspects of chaotic lasing in volume free electron lasers. Nonlinear Phenomena in Complex Systems. 2009;12(1):37–45.
  21. Sytova SN. Chaos in volume free electron lasers. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(2):93–111 (in Russian). DOI: 10.18500/0869-6632-2011-19-2-93-111.
  22. Benford J, Swegle JA, Schamiloglu E. High Power Microwaves. Second Edition. Taylor & Francis, New York, London; 2007. 552 p. DOI: 10.1201/9781420012064.
  23. Roberson CW, Sprangle P. A review of free-electron laser. Phys. Fluids B. 1989;1(1):3–42. DOI: 10.1063/1.859102.
  24. Marshall T. Free Electron Lasers. Macmillan Pub Co; 1985.
  25. Trubetskov DI, Khramov AE. Lectures on Microwave Electronics for Physicists. Vol. 1. Moscow: Fizmatlit; 2003. 496 p. (in Russian).
  26. Bugaev SP, Kanavets VI, Koshelev VI, Cherepenin VA. Relativistic Multi-Wave Microwave Generators. Novosibirsk: Nauka; 1991. 293 p. (in Russian).
  27. Vainshtein LA, Solntsev VA. Microwave Electronics Lectures. Moscow: Sovetskoe Radio; 1973. 400 p. (in Russian).
  28. Silin RA. Periodic Waveguides. Moscow: Fazis; 2002. 440 p. (in Russian).
  29. Biedron SG, Chae YC, Dejus RJ et al. Multidimensional free-electron laser simulation codes: A comparison study. Nucl. Instr. Meth. Phys. Res. A. 2000;445(1–3):110–115. DOI: 10.1016/S0168-9002(00)00124-8.
  30. Reiche S. Computation of FEL processes. In: Proc. 2003 Particle Accelerator Conf. New York: IEEE; 2004. P. 203–207. DOI: 10.1109/PAC.2003.1288879.
  31. Anfinogentov VG, Trubetskov DI. Chaotic oscillations in the hydrodynamic model of the Pierce diode. Sov. J. Commun. Technol. Electron. 1992;37(12):2251–2258 (in Russian).
  32. Kuznetsov SP, Trubetskov DI. Nonlinear transients during interaction between the electron beam moving in crossed fields and the backward electromagnetic wave. Radiophys. Quantum Electron. 1977;20(2):204–213. DOI: 10.1007/BF01034210.
  33. Ginzburg NS, Kuznetsov SP, Fedoseeva TN. Theory of transients in relativistic backward-wave tubes. Radiophys. Quantum Electron. 1978;21(7):728–739. DOI: 10.1007/BF01033055.
  34. Afanasenko VP, Baryshevsky VG, Gradovsky OT et al. Detection of parametric X-ray radiation of a GaAs monocrystal. Phys. Lett. A. 1989;141(5–6):311–313. DOI: 10.1016/0375-9601(89)90493-3.
  35. Afanasenko VP, Baryshevsky VG, Gatsikha SV et al. Anomaly detection in the angular distribution of parametric X-ray radiation. JETP Lett. 1990;51(4):213–216 (in Russian).
  36. Pinsker ZG. Dynamical Scattering of X-Rays in Crystals. Berlin: Springer; 1978. 514 p. 
Received: 
30.04.2012
Accepted: 
06.08.2012
Published: 
29.03.2013
Short text (in English):
(downloads: 85)