For citation:
Kuznetsov A. P., Turukina L. V., Savin A. V., Sataev I. R., Sedova Y. V., Milovanov S. V. Multi-parameter picture of transition to chaos. Izvestiya VUZ. Applied Nonlinear Dynamics, 2002, vol. 10, iss. 3, pp. 80-96. DOI: 10.18500/0869-6632-2002-10-3-80-96
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language:
English
Heading:
Article type:
Article
UDC:
517.9
Multi-parameter picture of transition to chaos
Autors:
Kuznetsov Aleksandr Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Turukina L. V., Saratov State University
Savin Aleksej Vladimirovich, Saratov State University
Sataev Igor Rustamovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Sedova Yuliya Viktorovna, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Milovanov Sergey Viktorovich, Saratov State University
Abstract:
In this paper we outline several research directions linked with multi-parameter analysis of complex dynamics of nonlinear systems. In particular, we discuss examples of realistic models of multi-parameter systems, critical phenomena at the chaos threshold, correspondence of features of differential equations and maps etc.
Key words:
Acknowledgments:
The authors thank S.P. Kuznetsov for discussions. The work was supported by CRDF аnd Ministry оf Education оf Russian Federation (grant REC-006), by Russian Foundation of Basic Research (grants 00-02-17509 аnd 02-02-06469) аnd Russian
Foundation of assistance to science fo our country.
Reference:
- Kuznetsov AP, Kuznetsov SP. Critical dynamics of coupled-map lattices at onset of chaos (review). Radiophys. Quantum Electron. 1991;34(10-12):845-868. DOI: 10.1007/BF01083617
- Kuznetsov AP, Kuznetsov SP. Critical dynamics for 1D maps. Part I. Feigenbaum’s scenario. Izvestiya VUZ. Applied Nonlinear Dynamics, 1993;1(1):15-32 (in Russian).
- Kuznetsov AP, Kuznetsov SP, Sataev IR. Critical dynamics for 1D maps. Part II. Two-parameter transition to chaos. Izvestiya VUZ. Applied Nonlinear Dynamics. 1993;1(3-4):17-35 (in Russian).
- Kuznetsov AP, Kuznetsov SP, Sataev IR. A variety of period-doubling universality classes in multi-parameter analysis of transition to chaos. Physica D. 1997;109(1-2):91-112. DOI: 10.1016/S0167-2789(97)00162-0.
- Kuznetsov AP, Kuznetsov SP, Sataev IR. Codimension and typicity in а context оf description оf transition to chaos via period - doubling in dissipative dynamical systems. Regular and Chaotic Dynamic. 1997;2(3-4):90-105.
- Ikeda K, Daido H, Akimoto О. Optical turbulence: chaotic behavior оf transmitted light from а ring cavity. Phys. Rev. Lett. 1980;45(9):709-712. DOI: 10.1103/PhysRevLett.45.709.
- Kuznetsov AP, Turukina LV. Dynamical systems of different classes аs models of thе kicked nonlinear oscillator. Izvestiya VUZ. Applied Nonlinear Dynamics. 2000;8(2):31-42.
- Kuznetsov AP, Turukina LV, Mosekilde E. Dynamical systems of different classes аs models of the kicked nonlinear oscillator. International Journal оf Bifurcation and Chaos. 2001;11(4):1065-1078. DOI: 10.1142/S0218127401002547.
- Tufillaro NB, Albano АМ. Chaotic dynamics оf а bouncing ball. Am. J. Phys. 1986;54(10):939-944. DOI: 10.1119/1.14796.
- Moon F. Chaotic Vibrations. Wiley and Sons; 1987. 309 p.
- Lieberman M, Lichtenberg A. Stochastic and adiabatic behavior of particles accelerated by periodic forces. Phys. Rev. 1972;5(4):1852-1866. DOI: 10.1103/PhysRevA.5.1852.
- Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and bifurcations of Vector Fields. New York: Springer; 1997. 462 p. DOI: 10.1007/978-1-4612-1140-2.
- Kuznetsov AP, Shirokov AP. Comparative analysis оf thе approximate and precise mapping for «bouncing ball». Izvestiya VUZ. Applied Nonlinear Dynamics. 2000;8(5):72-81 (in Russian).
- Kuznetsov AP, Shirokov AP. Discrete model of а backward - wave tube. Izvestiya VUZ. Applied Nonlinear Dynamics. 1997;5(6):76-84 (in Russian).
- Bratman VL, Savilov AV. Scenario of transition to the multi – frequency regime in the FEL - oscillator with a low-Q microwave system. Izvestiya VUZ. Applied Nonlinear Dynamics. 1994;2(6):27-39 (in Russian).
- Kuznetsov AP, Shirokov AP. Complex dynamics of two - mode low - dimension model of the free electron laser. Izvestiya VUZ. Applied Nonlinear Dynamics. 1999;7(1):3-11 (in Russian).
- Kuznetsov AP, Shirokov AP. Analysis оf the scenarios оf transition to chaos in the discrete two - mode model of free electron laser. Letters in the J. of Technical Physics. 1999;25(12):17-21.
- Kuznetsov AP, Kuznetsov SP, Turukina LV, Mosekilde E. Two-parameter analysis of the scaling behavior at the onset of chaos: Tricritical and pseudo-tricritical points. Physica A. 2001;300(3-4):367-385. DOI: 10.1016/S0378-4371(01)00368-5.
- Crutchfield JP, Farmer JD, Huberman BA. Fluctuations and simple chaotic dynamics. Phys. Rep. 1982;92(2):45-82. DOI: 10.1016/0370-1573(82)90089-8.
- Kuznetsov AP, Kapustina JV. Scaling properties at transition to chaos in model maps in the presence of noise. Izvestiya VUZ. Applied Nonlinear Dynamics. 2000;8(6):78-87 (in Russian).
- Gulyaev JV, Kapustina JV, Kuznetsov AP, Kuznetsov SP. On scaling properties in unidirectionally coupled period-doubling systems in the presence оf noise. Letters in the J. оf Technical Physics. 2001;27(22):58-65.
- Kapustina JV, Kuznetsov AP, Kuznetsov SP, Mosekilde E. Scaling properties of bicritical dynamics in unidirectionally coupled period-doubling systems in thе presence оf noise. Phys. Rev. Е. 2001;64(6):066207. DOI: 10.1103/PhysRevE.64.066207.
- Kuznetsov AP, Potapova AY. Features оf the complex dynamics оf the nonlinear oscillations with Thom'’s catastrophes. Izvestiya VUZ. Applied Nonlinear Dynamics. 2000;8(6):94-120.
- Kuznetsov SP, Sataev IR. Universality and scaling for the breakup оf phase synchronization а! the onset оf chaos in а periodically driven Réssler oscillator. Phys.Rev.E. 2001;64(4):046214. DOI: 10.1103/PhysRevE.64.046214.
- Arnold VI. Catastrophe Theory. Berlin: Springer; 1986. 108 p. DOI: 10.1007/978-3-642-96937-9.
Received:
18.05.2002
Accepted:
10.06.2002
Available online:
12.01.2024
Published:
30.09.2002
Journal issue:
- 507 reads