For citation:
Astakhov V. V., Shabunin A. V., Stalmahov P. A. Multistability, in-phase and anti-phase chaos synchronization in period-doubling systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2002, vol. 10, iss. 3, pp. 63-79. DOI: 10.18500/0869-6632-2002-10-3-63-79
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language:
English
Heading:
Article type:
Article
UDC:
537.86
Multistability, in-phase and anti-phase chaos synchronization in period-doubling systems
Autors:
Astakhov Vladimir Vladimirovich, Yuri Gagarin State Technical University of Saratov
Shabunin Aleksej Vladimirovich, Saratov State University
Stalmahov Petr Andreevich, Saratov State University
Abstract:
We consider mechanisms оf multistability formation аnd complete chaos synchronization loss in mutually coupled period-doubling maps. Cases of in-phase and anti-phase synchronization are investigated. Influence оf non-identity оf partial oscillators is also discussed.
Key words:
Acknowledgments:
The authors thanks to the Fond of Civil Research Development (Grant ВЕС 006) and Russian Fond of Basic Researching (Grant 00-02-17512) for financial support.
Reference:
- Fujisaka H, Yamada T. Stability theory of synchronized motion in coupled-oscillator systems. Progress оf Theoretical Physics. 1983;69(1):32-47. DOI: 10.1143/PTP.69.32.
- Pikovsky AS, Grassberger P. Symmetry breaking bifurcation for coupled chaotic attractors. J. Phys. A: Math. 1991;24(19):4587. DOI: 10.1088/0305-4470/24/19/022.
- Сао L-Y, Lai Y-C. Antiphase synchronism in chaotic systems. Phys. Rev. Е. 1998;58(1):382-386. DOI: 10.1103/PhysRevE.58.382.
- Ресоrа LM, Caroll TL. Synchronization in chaotic systems. Phys. Rev. Lett. 1990;64(8):821-824. DOI: 10.1103/PhysRevLett.64.821.
- Ashvin Р, Buescu J, Stewart I. Bubbling оf attractors and synchronization оf chaotic oscillators. Physics Letters А. 1994;193(2):126-139. DOI: 10.1016/0375-9601(94)90947-4.
- Ashvin Р, Buescu J, Stewart I. From attractors to chaotic saddle: а tale оf transverse instability. Nonlinearity. 1996;9(3):703. DOI: 10.1088/0951-7715/9/3/006.
- Lai YC, Grebogi C, Yorke JA, Venkataramani SC. Riddling bifurcation in chaotic dynamical systems. Phys. Rev. Lett. 1996;77(1):55-58. DOI: 10.1103/PhysRevLett.77.55.
- Pikovsky А, Osipov G, Rosenblum M, Zaks M, Kurths J. Attractor-repeller collision and eyelet intermittency аt the transition to phase synchronization. Phys. Rev. Lett. 1997;79(1):47-50. DOI: 10.1103/PhysRevLett.79.47.
- Sushchik MM, Rulkov NF, Abarbanel HDI. Robustness and stability of synchronized chaos: аn illustrative model. IEEE Transactions оn circuits and systems. 1997;44(10):866-873. DOI: 10.1109/81.633875.
- Astakhov V, Shabunin А, Kapitaniak T, Anishchenko V. Loss оf chaos synchronization through the sequence of bifurcations оf saddle periodic orbits. Phys.Rev. Lett. 1997;79(6):1014-1017. DOI: 10.1103/PhysRevLett.79.1014.
- Astakhov V, Hasler M, Kapitaniak T, Shabunin А, Anishchenko V. Effect оf parameter mismatch on the mechanism of chaos synchronization loss in coupled systems. Phys. Rev. Е. 1998;58(5):5620-5628. DOI: 10.1103/PhysRevE.58.5620.
- Рlatt N, Spiegel EA, Tresser С. On-off intermittency: a mechanism for bursting. Phys. Rev. Lett. 1993;70(3):279-282. DOI: 10.1103/physrevlett.70.279.
- Fujisaka H, Yamada Т. A new intermittency in coupled dynamical systems. Progr. Theor.Phys. 1985;74(4):918-921. DOI: 10.1143/PTP.74.918.
- Kuznetzov SP. Universality and scaling in the behavior of coupled Feigenbaum systems. Radiophys. Quantum Electron. 1985;28(8):681-695. DOI: 10.1007/BF01035195.
- Maistrenko YL, Maistrenko VL, Popovich А. Transverse instability and riddled basins in а system оf two coupled logistic maps. Phys. Rev. Е. 1998;57(3):2713-2724. DOI: 10.1103/PhysRevE.57.2713.
- Maistrenko YL, Maistrenko VL, Popovich А, Mosekilde E. Desynchronization оf chaos in coupled logistic maps. Phys. Rev. Е. 1999;60(3):2817-2830. DOI: 10.1103/PhysRevE.60.2817.
- Astakhov VV ‚ Bezruchko BP, Ponomarenko VI, Seleznev EP. Quasihomogeneous stochastic motions and their break-up in a system of coupled nonlinear oscillators. Radiophysics and Quantum Electronics. 1988;31(5):627-630 (in Russian).
- Astakhov V, Shabunin А, Uhm W, Kim S. Multistability formation and synchronization loss in coupled Hennon maps: Two sides of the single bifurcational mechanism. Phys.Rev. Е. 2001;63(5):056212. DOI: 10.1103/PhysRevE.63.056212.
- Anishchenko VS, Astakhov VV, Nikolaev VV, Shabunin AV. Chaotic synchronization in а network оf symmetrically coupled oscillators. Journal оf Communications Technology and Electronics. 2000;45(2):179-203.
- Astakhov VV, Balanov AG, Sosnovtzeva ОМ, Vadivasova TE. Loss оf Synchronization in coupled Rossler systems. Applied Nonlinear Dynamics. 1999;7(5):26-42.
- Arnold VI. Theory оf Ordinary Differential Equations. Part II. Moscow: Nauka; 1978 (in Russian).
- looss G, Joseph DD. Elementary Stability and Bifurcation Theory. New York, Heidelberg, Berlin: Springer Verlag; 1980. 324 p. DOI: 10.1007/978-1-4612-0997-3.
Received:
03.06.2002
Accepted:
20.07.2002
Available online:
12.01.2024
Published:
30.09.2002
Journal issue:
- 340 reads