ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Emelyanov V. V., Emelianova Y. P. Mutual synchronization of two coupled generators with delay. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 3, pp. 52-61. DOI: 10.18500/0869-6632-2013-21-3-52-61

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 139)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Mutual synchronization of two coupled generators with delay

Autors: 
Emelyanov Valerij Valerevich, Saratov State University
Emelianova Yulija Pavlovna, Saratov State University
Abstract: 

The effects of synchronization in the system of two coupled oscillators with delay are investigated. The picture of possible modes of generation in the case of identical and non-identical excitation parameters is studied in detail. The possibility of full synchronization in the stationary single-frequency, self-modulation and chaotic generation regime is demonstrated. The regime of «broadband synchronization» is found. In contrast with coupled finite dimensional systems, the boundaries of broadband synchronization area have wavy form. This takes place due to the resonances between different modes of the distributed systems with delay.

Reference: 
  1. Pikovsky A, Rosenblum M, Kurts Yu. Synchronization: a fundamental nonlinear phenomenon. Moscow: Tehnosphera; 2003. 508 p. (In Russian).
  2. Landa PS. Self-oscillations in systems with a finite number of degrees of freedom. Moscow: Librikom; 2010. 360 p. (In Russian).
  3. Landa PS. Nonlinear oscillations and waves. Moscow: Nauka; 1997. 496 p. (In Russian).
  4. Dmitriev AS, Kislov VYA. Stochastic oscillations in radiophysics and electronics. Moscow: Nauka; 1989. 280 p. (In Russian).
  5. Glass L, MacKey MC. From Clocks to Chaos. The Rhythms of Life. USA: Princeton University Press; 1988. 248 p.
  6. Bocharov GA, Rihan FA. Numerical modelling in biosciences using delay differential equations. J. Comp. Appl. Math. 2000;125(1):183–199. DOI:10.1016/S0377-0427(00)00468-4.
  7. Mensour B, Longtin A. Synchronization of delay-differential equations with application to private communication. Phys. Lett. A. 1998;244:59–70. DOI:10.1016/S0375-9601(98)00271-0.
  8. Kolmanovskii VB, Nosov VR. Stability of functional differential equations. London: Academic Press; 1986. 217 p.
  9. Ryskin NM, Usacheva SA. Synchronization of periodic oscillation in a delayed-feedback oscillator by external harmonic driving. Izvestiya VUZ. Applied Nonlinear Dynamics. 2009; 17(1):3-12. DOI: 10.18500/0869-6632-2009-17-1-3-12.
  10. Usacheva SA, Ryskin NM. Forced synchronization of a delayed-feedback oscillator. Physica D. 2012;241(4):372–381. DOI:10.1016/j.physd.2011.10.005.
  11. Dmitriev BS, Zharkov JD, Skorohodov VN, Genshaft AM. Synchronization of two coupled klystron active oscillators with delayed feedback. Izvestiya VUZ. Applied Nonlinear Dynamics. 2008;16(2):131-141. DOI: 10.18500/0869-6632-2008-16-2-131-141.
  12. Ryskin NM, Shigaev AM. Complex dynamics of a simple distributed self-oscillatory model system with delay. Technical Physics. 2002;47(7):795-802. DOI: 10.1134/1.1495037.
  13. Aronson DG, Ermentrout GB, Kopell N. Amplitude response of coupled oscillators. Physica D. 1990;41(3):403–449. DOI:10.1016/0167-2789(90)90007-C.
  14. Kuznetsov AP, Roman JuP. Properties of synchronization in the systems of nonidentical coupled van der Pol and van der Pol–Duffing oscillators. Broadband synchronization. Physica D. 2009;238(16):1499–1506. DOI:10.1016/j.physd.2009.04.016.
  15. Emelyanova JP, Kuznetsov AP. Synchronization of coupled van der pole and Kislov-Dmitriev self-oscillators. Technical Physics. 2011;56(4):435-442. DOI: 10.1134/S106378421104013X.
  16. Hairer E, Norsett SP, Wanner G. Solving ordinary differential equations. Nonstiff Problems. Moscow: Mir; 1990. 512 p. (In Russian).
  17. Ashwin P, Buescu J, Stewart I. Bubbling of attractors and synchronization of chaotic oscillators. Phys. Lett. A. 1994;193:126–139. DOI:10.1016/0375-9601(94)90947-4.
  18. Venkataramani SC, Hunt BR, Ott E, Gauthier DJ, Bienfang JC. Transitions to bubbling of chaotic systems. Phys. Rev. Lett. 1996;77(27):5361–5364. DOI: 10.1103/PhysRevLett.77.5361.
  19. Astakhov V, Hasler M, Kapitaniak T, Shabunin A, Anishchenko V. Effect of parameter mismatch on the mechanism of chaos synchronization loss in coupled systems. Phys. Rev. E. 1998;58(5):5620. DOI:10.1103/PhysRevE.58.5620.
  20. Astakhov V, Koblyanskii S, Shabunin A, Kapitaniak T. Peculiarities of the transitions to synchronization in coupled systems with amplitude death. Chaos. 2011;21(2):023127. DOI: 10.1063/1.3597643.
  21. Kuznetsov AP, Paksjutov VI, Roman JP. Properties of synchronization in the system of nonidentical coupled van der pol and van der Pol – Duffing oscillators. Broadband synchronization. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(4):3-15. DOI: 10.18500/0869-6632-2007-15-4-3-15.
  22. Emelyanova JP, Kuznetsov AP, Turukina LV. Dynamics of three coupled van der Pol oscillators with non-identical controlling parameters. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(5):76-90. DOI: 10.18500/0869-6632-2011-19-5-76-90.
Received: 
22.02.2013
Accepted: 
22.02.2013
Published: 
31.10.2013
Short text (in English):
(downloads: 123)