ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Ryashko L. B., Stihin P. V. Noise-induced backward bifurcations in stochastic Roessler system. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 4, pp. 20-36. DOI: 10.18500/0869-6632-2005-13-4-20-36

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 175)
Language: 
Russian
Article type: 
Article
UDC: 
517.925.42:531.36

Noise-induced backward bifurcations in stochastic Roessler system

Autors: 
Ryashko Lev Borisovich, Ural Federal University named after the first President of Russia B.N.Yeltsin
Stihin Pavel Viktorovich, Ural Federal University named after the first President of Russia B.N.Yeltsin
Abstract: 

Noise essentially influences the behavior of deterministic cycles of dynamical systems. Backward bifurcations of stochastic cycles for nonlinear Roessler model are investigated. Two approaches are demonstrated. In empirical approach the distribution densities of intersection points in intersecting planes are used. Theoretical analysis is based on stochastic sensitivity functions. This approach allows to achieve rather simple approximation of distribution densities in planes. Вifurcational values for noise intensities are found.

Key words: 
Reference: 
  1. Stratonovich RL. The Selected Questions of the Fluctuations Theory in a Radio Engineering. New York: Gordon and Breach; 1967. 560 p.
  2. Dimentberg MF. Nonlinear Stochastic Problems of Mechanical Vibrations. Moscow: Nauka; 1980. 368 p. (in Russian).
  3. Neimark YI, Landa PS. Stochastic and Chaotic Oscillations. Dordrecht: Springer; 1992. 500 p. DOI: 10.1007/978-94-011-2596-3.
  4. Soong TT, Grigoriu M. Random Vibration of Mechanical and Structural Systems. RTR Prentice-Hall, Englewood Cliffs, New Jersey; 1993. 402 p.
  5. Arnold L. Random Dynamical Systems. Berlin: Springer-Verlag; 1998. 586 p. DOI: 10.1007/978-3-662-12878-7.
  6. Landa PS, McClintock PVE. Changes in the dynamical behavior of nonlinear systems induced by noise. Physics Reports. 2000;323(1):1–80. DOI: 10.1016/S0370-1573(99)00043-5.
  7. Anishchenko VS, Neiman AB. Structure and properties of chaos in presence of noise. In: Sagdeev RZ, editor. Nonlinear Dynamics of Structures. Singapore: World Scientific; 1991. P. 302–336.
  8. Crutchfield J, Nauenberg M, Rudnick J. Scaling for external noise at the onset of chaos. Phys. Rev. Lett. 1981;46(14):933–935. DOI: 10.1103/PhysRevLett.46.933.
  9. Crutchfield J, Farmer J, Huberman B. Fluctuations and simple chaotic dynamics. Physics Reports. 1982;92(2):45–82. DOI: 10.1016/0370-1573(82)90089-8.
  10. Arnold L, Horsthemke W, Lefever R. White and coloured external noise and transition phenomena in nonlinear systems. Zs. Physik B. 1978;29(4):367–373. DOI: 10.1007/BF01324036.
  11. Horsthemke W, Lefever R. Noise-Induced Transitions. Berlin: Springer; 1984. 322 p. DOI: 10.1007/3-540-36852-3.
  12. Stratonovich RL, Landa PS. Impact of noise on a hard excited generator. Radiophys. Quantum Electron. 1959;2(1):37–44 (in Russian).
  13. Lefever R, Turner J. Sensitivity of a Hopf bifurcation to external multiplicative noise. In: Horsthemke W, Kondepudi DK, editors. Fluctuations and sensitivity in nonequilibrium systems. Berlin: Springer-Verlag; 1984. P. 143–149. DOI: 10.1007/978-3-642-46508-6_15.
  14. Lefever R, Turner J. Sensitivity of a Hopf bifurcation to multiplicative colored noise. Phys. Rev. Lett. 1986;56(16):1631–1634. DOI: 10.1103/physrevlett.56.1631.
  15. Franzoni L, Mannella R, McClintock P, Moss F. Postponement of Hopf bifurcations by multiplicative colored noise. Phys. Rev. A. 1987;36(2):834–841. DOI: 10.1103/PhysRevA.36.834.
  16. Altares V, Nicolis G. Stochastically forced Hopf bifurcation: approximate Fokker Planck equation in the limit of short correlation times. Phys. Rev. A. 1988;37(9):3630–3633. DOI: 10.1103/physreva.37.3630.
  17. Neiman A, Anishchenko V, Kurths J. Period-doubling bifurcations in the presence of colored noise. Phys. Rev. E. 1994;49(5):3801–3806. DOI: 10.1103/PhysRevE.49.3801.
  18. Gao JB, Hwang SK, Liu JM. When can noise induce chaos? Phys. Rev. Lett. 1999;82(6):1132–1135. DOI: 10.1103/PhysRevLett.82.1132.
  19. Ying-Cheng L, Zonghua L, Billings L, Schwartz I. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems. Phys. Rev. E. 2003;67(2):026210. DOI: 10.1103/PhysRevE.67.026210.
  20. Xu B, Lai YC, Zhu L, Do Y. Experimental characterization of transition to chaos in the presence of noise. Phys. Rev. Lett. 2003;90(16):164101. DOI: 10.1103/PhysRevLett.90.164101.
  21. Roessler OE, Wegman K. Chaos in Zhabotinskii reaction. Nature. 1978;271:89–90. DOI: 10.1038/271089a0.
  22. Arnold L, Bleckert G, Schenk-Hoppe K. The stochastic Brusselator: parametric noise destroys Hopf bifurcation. In: Crauel H, Gundlach M, editors. Stochastic Dynamics. New York: Springer; 1999. P. 71–92. DOI: 10.1007/0-387-22655-9_4.
  23. Arnold L, Boxler P. Stochastic bifurcation: Instructive examples in dimension one. In: Pinsky M, Wihstutz V, editors. Diffusion processes and related problems in analysis. Vol. II: Stochastic Flows. Progress in Probability. Vol. 27. Boston Basel Stuttgart: Birkhäuser; 1992. P. 241–255. DOI: 10.1007/978-1-4612-0389-6_10.
  24. Crauel H, Imkeller P, Steinkamp M. Bifurcations of one-dimensional stochastic differential equations. In: Crauel H, Gundlach M, editors. Stochastic Dynamics. Springer–Verlag, New York; 1999. P. 27–47. DOI: 10.1007/0-387-22655-9_2.
  25. Leng G, Namachchivaya N, Talwar S. Robustness of nonlinear systems perturbed by external random excitation. ASME Journal of Applied Mechanics. 1992;59(4):1015–1022. DOI: 10.1115/1.2894016.
  26. Malick K, Marcq P. Stability analysis of noise-induced Hopf bifurcation. Eur. Phys. J. 2003;36(1):119–128. DOI: 10.1140/epjb/e2003-00324-y.
  27. Baras F. Stochastic analysis of limit cycle behavior. Phys. Rev. Lett. 1996;77(7):1398–1401. DOI: 10.1103/physrevlett.77.1398.
  28. Bashkirtseva IA, Ryashko LB. Quasipotential method in the study of local stability of limit cycles to random influences. Izvestiya VUZ. Applied Nonlinear Dynamics. 2001;9(6):104–113 (in Russian).
  29. Bashkirtseva IA, Ryashko LB. Sensitivity analysis of stochastically forced Lorenz model cycles under period-doubling bifurcations. Dynamic Systems and Applications. 2002;11(2):293–309.
  30. Bashkirtseva IA, Ryashko LB. Stochastic sensitivity of 3D-cycles. Mathematics and Computers in Simulation. 2004;66(1):55–67. DOI: 10.1016/j.matcom.2004.02.021.
  31. Bashkirtseva IA, Ryashko LB, Stikhin PV. Stochastic sensitivity of the Rössler system cycles during the transition to chaos. Izvestiya VUZ. Applied Nonlinear Dynamics. 2003;11(6):32 (in Russian).
  32. Wentzell AD, Freidlin MI. Random Perturbations of Dynamical Systems. New York: Springer; 1984. 328 p. DOI: 10.1007/978-1-4684-0176-9.
  33. Day MV. Regularity of boundary quasi-potentials for planar systems. Applied Mathematics and Optimization. 1994;30(1):79–101. DOI: 10.1007/BF01261992.
  34. Naeh T, Klosek MM, Matkowsky BJ, Schuss Z. A direct approach to the exit problem. SIAM J. Appl. Math. 1990;50(2):595–627. DOI: 10.1137/0150036.
  35. Mil'Shtein GN, Ryashko LB. A first approximation of the quasipotential in problems of the stability of systems with random non-degenerate perturbations. Journal of Applied Mathematics and Mechanics. 1995;59(1):47–56. DOI: 10.1016/0021-8928(95)00006-B.
Received: 
31.01.2005
Accepted: 
03.05.2005
Published: 
30.11.2005
Short text (in English):
(downloads: 75)