ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Mazhirina J. A., Melnikov L. A., Turicyn S. K., Churkin D. V., Tarasov N. S. Nonlinear dynamics of long mirrorless fiber raman laser. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 5, pp. 73-82. DOI: 10.18500/0869-6632-2014-22-5-73-82

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 109)
Language: 
Russian
Article type: 
Article
UDC: 
621.826.373

Nonlinear dynamics of long mirrorless fiber raman laser

Autors: 
Mazhirina Julija Aleksandrovna, Yuri Gagarin State Technical University of Saratov
Melnikov Leonid Arkadevich, Yuri Gagarin State Technical University of Saratov
Abstract: 

Numerical model of long fiber Raman laser is proposed. The model based on the equations, describing the propagation of pump and Stokes waves, linear coupling of oppositely running waves due to scattering and its nonlinear interaction. The derivation of equations for slowly varying pulse envelopes uses the field decomposition in terms of spatial harmonics rather then commonly used temporal harmonics, which allows to avoid the two­point boundary conditions, and to employ the numerical scheme of Courant–Isaakson–Rees. This scheme was used for numerical simulations of space­temporal dynamics in long fiber Raman laser in the absence of the reflection at output fiber ends. It was shown that the dynamical regimes is connected with the instabilities of Stokes waves which move in the direction of pump waves against generation of oppositely running Stokes waves, and superluminal propagation of oppositely running pulses having the velocities which are higher than group velocity in the optical fiber.

Reference: 
  1. Churkin D, El-Taher A, Vatnik I, Ania-Castaсуn J, Harper P, Podivilov E, Babin S, and Turitsyn S. Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser. Opt. Express. 2012;20(10):11178-11188. DOI: 10.1364/OE.20.011178
  2. Turitsyn SK, Ania-Castanon JD, Babin SA, Karalekas V, Harper P, Churkin D, Kablukov SI, El-Taher AE, Podivilov EV, and Mezentsev VK. 270-km ultralong Raman fiber laser. Phys. Rev. Lett. 2009;103(13):133901.
  3. Turitsyn SK, Babin SA, El-Taher AE, Harper P, Churkin DV, Kablukov SI, Ania-Castanon JD, Karalekas V, and Podivilov EV. Random distributed feedback fibre laser. Nature Photonics. 2010;4(4):231-235.
  4. Turitsyn SK, Babin SA, Churkin DV, Vatnik ID, Nikulin M, Podivilov EV. Random distributed feedback fibre lasers. Physics Reports. 2014;542(2):133-193.
  5. Press WH, Teukolsky SA, Vetterling WT, and Flannery BP. The art of scientific computing. Numerical Recipes 3-d edition. New York: Cambridge University Press, 2007. 1237 p.
  6. Burgoyne B, Godbout N, and Lacroix S. Transient regime in a nth-order cascaded CW Raman fiber laser. Opt. Express. 2004;12(6):1019-1024.
  7. Suret P, Joly NY, Melin G, and Randoux S. Self-oscillations in a cascaded Raman laser made with a highly nonlinear photonic crystal fiber. Opt. Express. 2008;16(15):11237-11246.
  8. Courant R, Isaacson E, and Rees M. On the solution of nonlinear hyperbolic differential equations by finite differences. Communications on Pure and Applied Mathematics. 1952;5(3):243-255. DOI: 10.1002/cpa.3160050303
  9. Snyder A, Love J. Optical waveguide theory. Chapman and Hall, 1983.
  10. Agraval GP. Nonlinear Fiber Optics. Academic Press, 2007.
  11. Johnson RV. and Marburger JH. Relaxation oscillation in stimulated Raman and Brillouin scattering. Phys. Rev. 1971;4(3):1175-1182.
Received: 
20.12.2014
Accepted: 
20.12.2014
Published: 
31.03.2015
Short text (in English):
(downloads: 75)