ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Postnov D. E., Shishkin A. V., Sherbakov P. A. Nonlinear effects in ensembles of oscillators with resource distribution coupling. Part 2: oscillatory regimes of one-dimension array of self-sustained oscillators coupled via common power supply. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 5, pp. 23-35. DOI: 10.18500/0869-6632-2007-15-5-23-35

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 105)
Language: 
Russian
Article type: 
Article
UDC: 
530.182

Nonlinear effects in ensembles of oscillators with resource distribution coupling. Part 2: oscillatory regimes of one-dimension array of self-sustained oscillators coupled via common power supply

Autors: 
Postnov Dmitrij Engelevich, Saratov State University
Shishkin Aleksandr Vladislavovich, Saratov State University
Sherbakov Pavel Aleksandrovich, Saratov State University
Abstract: 

We suggest the model of ensemble of resource sharing oscillators in the form of one-dimension array of self-sustained systems with N-type nonlinearity. We analyze the mechanism of oscillatory cluster formation, study the intra-cluster synchronization, and show the effect of energy fluctuations.

Key words: 
Reference: 
  1. Postnov DE, Sosnovtseva OV, Mosekilde E. Oscillator clustering in resource distribution chain. Chaos. 2005;15:13704. DOI: 10.1063/1.1852151.
  2. Barfred M, Mosekilde E, Holstein-Rathlou NH. Bifurcation analysis of nephron pressure and flow regulation. Chaos. 1996;6:280. DOI: 10.1063/1.166175.
  3. Holstein-Rathlou NH, Marsh DJ. A dynamic model of renal blood flow autoregulation. Bulletin of Mathematical Biology. 1994;563:411–429. DOI: 10.1007/BF02460465.
  4. Postnov DE, Balanov AG, Mosekilde E. Synchronization phenomena in an array of population dynamic systems. Advances in Complex Systems. 1998;1:181–202. DOI: 10.1142/S0219525998000132.
  5. Mosekilde E, Maistrenko Yu, Postnov D. Chaotic synchronization. Application to living systems. World Scientific; 2002.
  6. van der Pol B, van der Mark J. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Phil. Mag. Suppl. 1928;6:763–775.
  7. Kuznetsov AP, Kuznetsov SP, Ryskin NM. Nonlinear Oscillations. Moscow: Fizmatlit; 2002. (in Russian).
  8. Fitzhugh RA. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1961;1:445–466. DOI: 10.1016/s0006-3495(61)86902-6.
  9. Keener J, Sneyd J. Mathematical Physiology. New York: Springer-Verlag; 1998.
  10. Izhikevich Eugene M. Neural excitability, spiking and bursting. Int. J. Bifurcation and Chaos. 2000;10(6):1171–1266.
  11. Pikovsky A, Kurth J. Coherence resonance in a noise-driven excitable systems. Phys. Rev. Lett. 1997;78:775–778. DOI: 10.1103/PhysRevLett.78.775.
  12. Postnov DE, Sosnovtseva OV, Han SK, Kim WS. Noise-induced multimode behavior in excitable systems. Phys. Rev. E. 2002;66:016203. DOI: 10.1103/PhysRevE.66.016203.
  13. Anishchenko VS, Neiman AB, Moss F, Shimansky-Geier L. Stochastic resonance: noise-enhanced order. Phys. Usp. 1999;42(1):7–36.
  14. Shulgin BV, Neiman AB, Anishchenko VS. Mean switching frequency locking in stochastic bistable systems driven by a periodic force. Phys. Rev. Lett. 1995;75:4157–4160. DOI: 10.1103/PhysRevLett.75.4157.
  15. Han SK, Yim TG, Postnov DE, Sosnovtseva OV. Interacting coherence resonance oscillators. Phys. Rev. Lett. 1999;83:1771–1774. DOI: 10.1103/PhysRevLett.83.1771.
  16. Postnov D, Han SK, Yim TG, Sosnovtseva OV. Experimental observation of coherence resonance in cascaded excitable systems. Phys. Rev. E. 1999;59(4):3791–3794. DOI: 10.1103/PhysRevE.59.R3791.
  17. Postnov DE, Sosnovtseva OV, Setsinsky DV, Borisov VS. Noise induced oscillations and stochastic synchronization in coupled excitable systems. Izvestiya VUZ. Applied Nonlinear Dynamics. 2001;9(3):15–31 (in Russian).
  18. Setsinsky DV, Postnov DE. Noise-induced coherence in an excitable system with frequency-dependent feedback. Technical Physics Letters. 2005;31(4):302–305. DOI: 10.1134/1.1920378.
Received: 
12.05.2006
Accepted: 
15.05.2007
Published: 
30.11.2007
Short text (in English):
(downloads: 75)