ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Davidovich M. V., Stephuk Y. V. Nonlinear electromagnetic wave passing through the layer with quadratic and fractionally-­polynomial permittivity dependences on amplitude. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 3, pp. 160-177. DOI: 10.18500/0869-6632-2010-18-3-160-177

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 126)
Language: 
Russian
Article type: 
Article
UDC: 
537.311.33

Nonlinear electromagnetic wave passing through the layer with quadratic and fractionally-­polynomial permittivity dependences on amplitude

Autors: 
Davidovich Mihail Vladimirovich, Saratov State University
Stephuk Yulia Valentinovna, Saratov State University
Abstract: 

The integral equations for powerful flat electromagnetic wave diffraction on nonlinear dielectric layer with cubic nonlinearity and fractionally­polynomial permittivity dependence on wave amplitude have been considered and solved. There are results which have been obtained by several numerical methods: series approaching, minimal discrepancy, power series expansion, and Runge–Kutt methods. Also the some analytical results are presented. The possibilities of power limiting, super­exponential damping and some other effects in semi­conducting plasma have bean shown by numerical simulation.

Reference: 
  1. Ginzburg VL. The propagation of electromagnetic waves in plasma. Moscow: Fizmatgiz; 1960. 550 p. (in Russian).
  2. Akhiezer AI,  Akhiezer IA,  Polovin RV,  Sitenko AG,  Stepanov KN. Electrodynamics of Plasma. Moscow: Nauka; 1974. 720 p. (in Russian).
  3. Litvak AG. Dynamic non-linear electromagnetic. phenomena in plasmas. Problems of Plasma Theory. Moscow: Atomizdat. 1980;10:164–242 (in Russian).
  4. Bass FG, Gurevich YuG. Hot electrons and strong electromagnetic waves in the plasma of semiconductors and gas discharge. Moscow: Nauka; 1975. 400 p. (in Russian).
  5. Lyubchenko VE, Martyashin VA. Amplification of millimeter waves in interaction with drifting electrons in layered semiconductor dielectric waveguides. Journal of Communications Technology and Electronics. 1993;38(10):1900 (in Russian).
  6. Glushchenko AG. A theory of microwave waveguide systems with nonlinear thin layes. Izv. Vuzov. Radiophysics. 1988;31(9):1098–1103 (in Russian).
  7. Smirnov YuG. Propagation of electromagnetic waves in cylindrical dielectric waveguides filled with a nonlinear medium. Journal of Communications Technology and Electronics. 2005;50(2):179–185.
  8. Lerer AM. A Simple Method for Investigating the Electromagnetic Wave Propagation in Nonlinear Dielectric Media. Journal of Communications Technology and Electronics. 1997;42(6):593–595.
  9. Makeeva GS, Golovanov OA. Electrodynamic analysis of interaction of electromagnetic waves with nonlinear gyromagnetic inclusions in waveguiding structures. Journal of Communications Technology and Electronics. 2006;51(3):245–251. DOI: 10.1134/S1064226906030016.
  10. Nikogosyan AS. Generation of ultrashort pulses of millimeter and centimeter radiation in a waveguide partly filled with a nonlinear crystal. Sov. J. Quantum. Electron. 1988;18(5):624–626.
  11. Molotkov IA, Vakulenko SA.  Concentrated Nonlinear Waves. Leningrad: Leningrad State University Publ.; 1988. 240 p. (in Russian).
  12. Molotkov IA, Vakulenko SA. Nonlinear localized wave processes. Moscow: Janus-K; 1999. 176 p. (in Russian).
  13. Molotkov IA, Manenkov AB. On nonlinear tunnel effects. Journal of Communications Technology and Electronics. 2007;52(7):743–750. DOI: 10.1134/S1064226907070054.
  14. Mironov VA. Nonlinear illumination of a plane plasma layer. Izv. VUZ. Radiophysics. 1971;14:1450–1452 (in Russian).
  15. Isakov MV, Permyakov VA. Numerical analysis of H-wave propagation in a rectangular waveguide with inclusion of a nonlinear dielectric. Izv. VUZ. Radiophysics. 1988;31(9):1139–1140 (in Russian).
  16. Altshuler EYu,  Davidovich MV. Diffraction of Strong Electromagnetic Wave on Semiconductive Elements in the Rectangular Waveguide. Telecommunications and Radio Engineering. 2008;10:3946 (in Russian).
  17. Altshuler EYu, Davidovich MV. Nonlinear diffraction of a strong electromagnetic field on a semiconductor element in a rectangular waveguide. Physics of wave processes and radio engineering systems. 2008;11(4):64–68 (in Russian).
  18. Golovanov OA. Electrodynamic analysis of irregular waveguides and resonators with nonlinear media. Soviet Journal of Communications Technology and Electronics. 1990;35(9):1853–1863 (in Russian).
  19. Davidovich MV. Finite-element method in the space-time domain for nonstationary electrodynamics. Technical Physics. 2006;51(1):11–21. DOI: 10.1134/S1063784206010026.
  20. Belotserkovskii OM, Davydov YM. Method of Large Particles in the Gas dynamics. Computational Experiments. Moscow: Nauka; 1982. 392 p. (in Russian).
  21. Tikhonravov AV, Trubetskov MK. New problems in multilayer optics. Journal of Communications Technology and Electronics. 2005;50(2):247–253.
  22. Golant E.I., Golant K.M. New method for calculating the spectra and radiation losses of leaky waves in multilayer optical waveguides. Technical Physics. 2006;51(8):1060–1068.
  23. Lagovskii BA. Absorbing and antireflecting continuously inhomogeneous coatings for electromagnetic waves. Journal of Communications Technology and Electronics. 2006;51(1):68–77. DOI: 10.1134/S1064226906010098.
  24. Davidovich MV, Alexutova SV. Diffraction of plane waves on an inhomogeneous magnetodielectric layer: a comparative analysis of methods. Radiation and scattering of electromagnetic waves IREMV-2007. Proceedings of the International Conference. Taganrog: TRTU. 2007:357–361 (in Russian).
  25. Ortega J, Reinboldt V. Iterative methods for solving nonlinear systems of equations with many unknowns. Moscow: Mir; 1975. 558 p. (in Russian).
Received: 
03.12.2008
Accepted: 
02.03.2010
Published: 
30.06.2010
Short text (in English):
(downloads: 110)