ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Grachev A. A., Beginin . N., Martyshkin A. A., Khutieva A. B., Filchenkov . O., Sadovnikov A. V. Nonlinear Fano resonance in a coupled system magnonic microwave-guide – resonator. Izvestiya VUZ. Applied Nonlinear Dynamics, 2021, vol. 29, iss. 2, pp. 254-271. DOI: 10.18500/0869-6632-2021-29-2-254-271

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 1121)
Article type: 

Nonlinear Fano resonance in a coupled system magnonic microwave-guide – resonator

Grachev Andrey Andreevich, Saratov State University
Beginin E. N. , Saratov State University
Martyshkin A. A. , Saratov State University
Khutieva A. B., Saratov State University
Filchenkov I. O., Saratov State University
Sadovnikov Aleksandr Vladimirovich, Saratov State University

The purpose of research is to study of characteristics of the Fano resonance in a coupled system of nonlinear microwave-guides and resonators depending on geometric parameters of the systems, magnitude of the coupling between them, and the intensity of spin waves. Methods. Linear and nonlinear spin-wave excitations in lateral systems of irregular microwaveguides and resonators based on films of yttrium iron garnet are considered. Using micromagnetic simulation of spin-wave excitations and numerical integration of the coupled wave equation system, the transfer characteristics of the «microwaveguide – resonator» system and the Fano resonance parameters are calculated taking into account the cubic nonlinearity of magnetic media. Results. Based on the numerical integration of the system of equations of coupled waves that take into account the cubic nonlinearity of the magnetic media, theoretical studies have been carried out of the dependences of the transfer and phase characteristics of the «microwave-guide – resonator» system on the intensity of surface spin waves. Features of the demonstration of constructive and destructive interference of spin waves at Fano resonance are studied. Dependences of characteristics of the parameters of the Fano nonlinear resonance (asymmetry coefficient, resonance frequency shifts) on the intensity of spin-wave excitations are established. Conclusion. Results can be used to create spin-wave demultiplexers, power dividers and microwave couplers based on the lateral system of magnetic waveguides as a threshold element for neuromorphic networks, etc.

  1. Fano U. Effects of configuration interaction on intensities and phase shifts // Phys. Rev. 1961. Vol. 124, no. 6. P. 1866–1878. DOI: 10.1103/PhysRev.124.1866.
  2. Miroshnichenko A. E., Flach S., Kivshar Y. S. Fano resonances in nanoscale structures // Rev. Mod. Phys. 2010. Vol. 82, no. 3. P. 2257–2298. DOI: 10.1103/RevModPhys.82.2257.
  3. Kamenetskii E., Sadreev A., Miroshnichenko A. E. Fano Resonances in Optics and Microwaves. Vol. 219 of Springer Series in Optical Sciences. Springer International Publishing, 2018. 582 p. DOI: 10.1007/978-3-319-99731-5.
  4. Galli M., Portalupi S. L., Belotti M., Andreani L. C., O’Faolain L., Krauss T. F. Light scattering and Fano resonances in high-Q photonic crystal nanocavities // Appl. Phys. Lett. 2009. Vol. 94, no. 7. P. 071101. DOI: 10.1063/1.3080683.
  5. Zhou W. et al. Progress in 2D photonic crystal Fano resonance photonics // Prog. Quantum Electron. 2014. Vol. 38, no. 1. P. 1–74. DOI: 10.1016/j.pquantelec.2014.01.001.
  6. Chibaa A., Fujiwara H., Hotta J., Takeuchi S., Sasaki K. Fano resonance in a multimode tapered fiber coupled with a microspherical cavity // Appl. Phys. Lett. 2005. Vol. 86, no. 26. P. 261106. DOI: 10.1063/1.1951049.
  7. Fan S. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems // Appl. Phys. Lett. 2002. Vol. 80, no. 6. P. 908–910. DOI: 10.1063/1.1448174.
  8. Butet J., Martin O. J. F. Fano resonances in the nonlinear optical response of coupled plasmonic nanostructures // Opt. Express. 2014. Vol. 22, no. 24. P. 29693–29707. DOI: 10.1364/OE.22.029693.
  9. Ortuno R., Cortijo M., Mart ˜ ´inez A. Fano resonances and electromagnetically induced transparency in silicon waveguides loaded with plasmonic nanoresonators // J. Opt. 2017. Vol. 19, no. 2. P. 025003. DOI: 10.1088/2040-8986/aa51e0.
  10. Cardoso J. L., Pereyra P. Spin inversion devices operating at Fano anti-resonances // EPL. 2008. Vol. 83, no. 3. P. 38001. DOI: 10.1209/0295-5075/83/38001.
  11. Djafari-Rouhani B., Al-Wahsh H., Akjouj A., Dobrzynski L. One-dimensional magnonic circuits with size-tunable band gaps and selective transmission // Journal of Physics: Conference Series. 2011. Vol. 303, no. 1. P. 012017. DOI: 10.1088/1742-6596/303/1/012017.
  12. Al-Wahsh H. Existence and collapse of Fano resonances as a function of pinning field in simple mono-mode magnetic circuits // Eur. Phys. J. B. 2010. Vol. 73, no. 4. P. 527–537. DOI: 10.1140/epjb/e2010-00032-7.
  13. Kroner M., Govorov A. O., Remi S., Biedermann B., Seidl S., Badolato A., Petroff P. M., Zhang W., Barbour R., Gerardot B. D., Warburton R. J., Karrai K. The nonlinear Fano effect // Nature. 2008. Vol. 451, no. 7176. P. 311–314. DOI: 10.1038/nature06506.
  14. Miroshnichenko A. E., Mingaleev S. F., Flach S., Kivshar Y. S. Nonlinear Fano resonance and bistable wave transmission // Phys. Rev. E. 2005. Vol. 71, no. 3. P. 036626. DOI: 10.1103/PhysRevE.71.036626.
  15. Nazari F., Bender N., Ramezani H., Moravvej-Farshi M. K., Christodoulides D. N., Kottos T. Optical isolation via PT-symmetric nonlinear Fano resonances // Opt. Express. 2014. Vol. 22, no. 8. P. 9574–9584. DOI: 10.1364/OE.22.009574.
  16. Yu Y., Chen Y., Hu H., Xue W., Yvind K., Mork J. Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry // Laser & Photonics Reviews. 2015. Vol. 9, no. 2. P. 241–247. DOI: 10.1002/lpor.201400207.
  17. Yu Y., Heuck M., Hu H., Xue W., Peucheret C., Chen Y., Oxenløwe L. K., Yvind K., Mørk J. Fano resonance control in a photonic crystal structure and its application to ultrafast switching // Appl. Phys. Lett. 2014. Vol. 105, no. 6. P. 061117. DOI: 10.1063/1.4893451.
  18. Yu Y., Xue W., Semenova E., Yvind K., Mork J. Demonstration of a self-pulsing photonic crystal Fano laser // Nature Photon. 2017. Vol. 11, no. 2. P. 81–84. DOI: 10.1038/nphoton.2016.248.
  19. Mork J., Chen Y., Heuck M. Photonic crystal Fano laser: Terahertz modulation and ultrashort pulse generation // Phys. Rev. Lett. 2014. Vol. 113, no. 16–17. P. 163901. DOI: 10.1103/PhysRevLett.113.163901.
  20. Joe Y. S., Satanin A. M., Kim C. S. Classical analogy of Fano resonances // Phys. Scr. 2006. Vol. 74, no. 2. P. 259–266. DOI: 10.1088/0031-8949/74/2/020.
  21. Dogkas L., Kamalakis T., Alexandropoulos D. Analytical model for active racetrack resonators with intracavity reflections and its application in Fano resonance tailoring // Appl. Opt. 2018. Vol. 57, no. 17. P. 4824–4831. DOI: 10.1364/AO.57.004824.
  22. Sander D., Valenzuela S. O., Makarov D., Marrows C. H., Fullerton E. E., Fischer P., McCord J., Vavassori P., Mangin S., Pirro P., Hillebrands B., Kent A. D., Jungwirth T., Gutfleisch O., Kim C. G., Berger A. The 2017 magnetism roadmap // Journal of Physics D: Applied Physics. 2017. Vol. 50, no. 36. P. 363001. DOI: 10.1088/1361-6463/aa81a1.
  23. Khitun A., Bao M., Wang K. L. Magnonic logic circuits // Journal of Physics D: Applied Physics. 2010. Vol. 43, no. 26. P. 264005. DOI: 10.1088/0022-3727/43/26/264005.
  24. Kruglyak V. V., Demokritov S. O., Grundler D. Magnonics // Journal of Physics D: Applied Physics. 2010. Vol. 43, no. 26. P. 264001. DOI: 10.1088/0022-3727/43/26/264001.
  25. Nikitov SA, Kalyabin DV, Lisenkov IV, Slavin AN, Barabanenkov YN, Osokin SA, Sadovnikov AV, Beginin EN, Morozova MA, Sharaevsky YP, Filimonov YA, Khivintsev YV, Vysotsky SL, Sakharov VK, Pavlov ES. Magnonics: A new research area in spintronics and spin wave electronics. Phys. Usp. 2015;58(10):1002–1028. DOI: 10.3367/UFNe.0185.201510m.1099
  26. Kalinikos B. A., Slavin A. N. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions // J. Phys. C Solid State Phys. 1986. Vol. 19, no. 35. P. 7013–7033. DOI: 10.1088/0022-3719/19/35/014.
  27. Patton C. E. Magnetic excitations in solids // Physics Reports. 1984. Vol. 103, no. 5. P. 251–315. DOI: 10.1016/0370-1573(84)90023-1.
  28. Stancil D. D., Prabhakar A. Spin Waves: Theory and Applications. Springer US, 2009. 348 p. DOI: 10.1007/978-0-387-77865-5.
  29. De Wames R. E., Wolfram T. Dipole-exchange spin waves in ferromagnetic films // J. Appl. Phys. 1970. Vol. 41, no. 3. P. 987–993. DOI: 10.1063/1.1659049.
  30. Harris V. G., Geiler A., Chen Y., Yoon S. D., Wu M., Yang A., Chen Z., He P., Parimi P. V., Zuo X., Patton C. E., Abe M., Acher O., Vittoria C. Recent advances in processing and applications of microwave ferrites // J. Magn. Magn. Mater. 2009. Vol. 321, no. 14. P. 2035–2047. DOI: 10.1016/j.jmmm.2009.01.004.
  31. Chrisey D. et al. Microwave magnetic film devices // Thin Films. 2001. Vol. 28. P. 319–374. DOI: 10.1016/S1079-4050(01)80023-5.
  32. Beginin E. N., Sadovnikov A. V., Sharaevskaya A. Y., Stognij A. I., Nikitov S. A. Spin wave steering in three-dimensional magnonic networks // Appl. Phys. Lett. 2018. Vol. 112, no. 12. P. 122404. DOI: 10.1063/1.5023138.
  33. Sadovnikov A. V., Beginin E. N., Sheshukova S. E., Romanenko D. V., Sharaevskii Y. P., Nikitov S. A. Directional multimode coupler for planar magnonics: Side-coupled magnetic stripes // Appl. Phys. Lett. 2015. Vol. 107, no. 20. P. 202405. DOI: 10.1063/1.4936207.
  34. Rousseau O., Rana B., Anami R., Yamada M., Miura K., Ogawa S., Otani Y. Realization of a micrometre-scale spin-wave interferometer // Sci. Rep. 2015. Vol. 5. P. 9873. DOI: 10.1038/srep09873.
  35. Ustinov A. B., Drozdovskii A. V., Kalinikos B. A. Multifunctional nonlinear magnonic devices for microwave signal processing // Appl. Phys. Lett. 2010. Vol. 96, no. 14. P. 142513. DOI: 10.1063/1.3386540.
  36. Scott M. M., Patton C. E., Kostylev M. P., Kalinikos B. A. Nonlinear damping of high-power magnetostatic waves in yttrium–iron–garnet films // J. Appl. Phys. 2004. Vol. 95, no. 11. P. 6294. DOI: 10.1063/1.1699503.
  37. Kruglyak V. V. et al. Graded Magnonic Index and Spin Wave Fano Resonances in Magnetic Structures: Excite, Direct, Capture. Spin Wave Confinement: Propagating Waves, Second Edition, 2017. P. 11–46. DOI: 10.1201/9781315110820.
  38. Vysotsky SL, Dudko GM, Nikitov SA, Novitsky NN, Sakharov VK, Stognij AI, Khivintsev YV, Filimonov YA. Resonance properties of magnetic periodic structures: Bragg, Wood, Fano resonances. Materials of the XX International Symposium «Nanophysics and Nanoelectronics»; 2016. P. 170–171 (in Russian).  
  39. Vansteenkiste A., Leliaert J., Dvornik M., Helsen M., Garcia-Sanchez F., Van Waeyenberge B. The design and verification of MuMax3 // AIP Advances. 2014. Vol. 4, no. 10. P. 107133. DOI: 10.1063/1.4899186.
  40. Damon R. W., Eshbach J. R. Magnetostatic modes of a ferromagnet slab // Journal of Physics and Chemistry of Solids. 1961. Vol. 19, no. 3–4. P. 308–320. DOI: 10.1016/0022-3697(61)90041-5.
  41. Radic S., George N., Agrawal G. P. Analysis of nonuniform nonlinear distributed feedback structures: generalized transfer matrix method // IEEE Journal of Quantum Electronics. 1995. Vol. 31, no. 7. P. 1326–1336. DOI: 10.1109/3.391098.
  42. Meloche E., Cottam M. G. Thermal properties of surface and bulk spin waves in uniaxial and nonuniaxial metamagnetic films // Phys. Rev. B. 2004. Vol. 70, no. 9. P. 094423. DOI: 10.1103/PhysRevB.70.094423.