ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kuznetsov A. P. Nonlinear oscillations, catastrophes and bifurcations. Tasks.. Izvestiya VUZ. Applied Nonlinear Dynamics, 1997, vol. 5, iss. 4, pp. 29-43. DOI: 10.18500/0869-6632-1997-5-4-29-43

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Other
UDC: 
53(075); 537.86

Nonlinear oscillations, catastrophes and bifurcations. Tasks.

Autors: 
Kuznetsov Aleksandr Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

Examples of problems are presented - for the courses "Nonlinear Oscillations", "Catastrophes and Bifurcations". The need for seminar classes is discussed. Connections with the course of general physics are demonstrated.

Key words: 
Acknowledgments: 
When developing the courses “Nonlinear Oscillations” and “Catastrophes and Bifurcations”, the results of scientific research supported by the grant of the Russian Foundation for Basic Research № 96-15-96921 were used.
Reference: 
  1. Kapitza PL. Experiment, Theory, Practice.  Berlin: Springer; 1980. 434 p. DOI: 10.1007/978-94-009-8977-1.
  2. Postnikov LV, Korolev VI, Tarantovich TM. Collection of Problems on the Theory of Oscillations. М.: Nauka; 1978. 272 p. (in Russian).
  3. Mandelshtam LI. Lectures on Oscillation Theory. M.: Nauka; 1972. 417 p. (in Russian).
  4. Andronov AA, Vitt AA, Khaikin SE. Theory of Oscillators. Oxford: Pergamon Press, 1966. 837 p.
  5. Rabinovich MI, Trubetskov DI. Introduction to the Theory of Oscillations and Waves. М.: Nauka; 1992. 454 p. (in Russian).
  6. Anishchenko VS. Complex Oscillations in Simple Systems. М.: Nauka; 1990. 312 p. (in Russian).
  7. Butenin NV, Neimark YuI, Fufaev NА. Introduction to the Theory of Nonlinear Oscillations. М.: Nauka; 1987. 384 p.
  8. Poston T, Stewart I. Catastrophe Theory and Its Applications. N.Y.: Dover Publ.; 1996. 491 p.
  9. Gilmore R. Catastrophe Theory for Scientists and Engineers. N.Y.: Wiley; 1981. 686 p.
  10. Arnold VI. Catastrophe Theory. Berlin: Springer; 1992. 150 p. DOI: 10.1007/978-3-642-58124-3.
  11. Arnold VI. Catastrophe theory. Science and Life. 1989;10:12-19. (in Russian).
  12. Arnold VI. Catastrophe theory. Results of Science and Technology. Modern Problems of Mathematics, Fundamental Directions. 1986:5(86):219-275.
  13. Thompson JMT. Instabilities and Catastrophes in Science and Engineering. N.Y.: Wiley; 1982. 226 p.
  14. Crawford JD. Intoduction to bifurcation theory. Rev. Mod. Phys. 1991;63(4):991-1037. DOI: 10.1103/RevModPhys.63.991.
  15. Thompson JMT, Stewart HB. Nonlinear Dynamics and Chaos. N.Y.: Wiley; 1986. 376 p.
  16. Crawford FS Jr. Waves. N.Y.: McGraw-Hill; 1968. 600 p.
  17. Ikeda K, Daido H, Akimoto О. Optical turbulence: chaotic behavior of transmitted light from а ring cavity. Phys. Rev. Lett. 1980;45(9):709-712. DOI: 10.1103/PhysRevLett.45.709.
Received: 
13.05.1997
Accepted: 
16.08.1997
Published: 
17.10.1997