ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Landa P. S. Nonlinear random waves in fluid, and the main mechanism of their excitation. Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, iss. 1, pp. 19-40. DOI: 10.18500/0869-6632-2015-23-1-19-40

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 153)
Article type: 
532.59, 52

Nonlinear random waves in fluid, and the main mechanism of their excitation

Landa Polina Solomonovna, Lomonosov Moscow State University

To describe the problem of the random nonlinear waves in fluid, we must know, exactly or approximately, how occurs the process of the vortex separation. For this it is conveniently to use models based on physical considerations and (or) some experimental data. The main attention in this review will be attended to random waves, emerging, for example, at stall flutter. Such waves often appear in fluid, and they are the main cause of many disasters is seas and oceans. As a rule, stall flutter is connected with the pulling phenomenon, and observed in systems with two and (or) more degrees of freedom. In principle, in such systems both approximately one-frequency (synchronous) mode, and many-frequency (asynchronous) modes (when each mode oscillates with its natural frequency) are possible. But in the case of the pulling phenomenon only one-frequency mode, corresponding to its natural frequency (see [1]) is stable. Unlike to usual turbulence stall flutter is a self-oscillatory process. The feedback in this process appears due to interaction between the fluid and the streamline body. It should be noted that wave motions in fluid can be of very complex character. In last years a great interest appears to waves of an anomalously high amplitude – so called freak-waves, and rogue-waves. We assume that the main cause of such waves is also vortex separation.

  1. Panovko Ya.G., Gubanova I.I. Stability and Oscillations of Elastic Systems. Moscow: Nauka, 1979 (in Russian).
  2. Landa P.S. Universality of oscillation theory laws. Types and role of mathematical models // Discrete Dynamics in Nature and Society. 1997. Vol. 1. P. 99.
  3. Mandelshtam L.I. Lectures on Oscillations (1930–1932). Complete Works: Vol. 4.Moscow: Izd-vo AN SSSR, 1955. S. 241 (in Russian).
  4. Strelkov S.P. Introduction in Theory of Oscillations. Moscow: Izd-vo «Lan’», 2005 (in Russian).
  5. Landa P.S., Ginevsky A.S. Use of mathematical models for the solution of «unsol-vable» problems. In «Nonlinear Problems of Oscillation Theory and Control Theory. Vibrational Mechanics» / Eds V.V. Beletskii, D.A. Indeytsev, A.L. Fradkov. Institute of Theoretical Engineering RAS. SPB: Nauka, 2009. P. 349.
  6. Landa P.S. Stall flutter as one of mechanisms of excitation of self-oscillations of the electric power transmission line // Izv. VUZ. Applied Nonlinear Dynamics. 2009. Vol. 17, No 2. S. 3 (in Russian).
  7. Annenkov S.Yu. and Badulin S.I. Multi-Wave Resonances and Formation of High-Amplitude Waves in the Ocean // Rogue Wave – 2000. Brest, France, 2000 / Eds M.Olagnon, G.A. Athanassoulis. Ifremer, 2001. P. 205.
  8. Janssen P.A.E.M. Nonlinear four-wave interactions and freak waves // J. Phys. Oceanogr. 2003. Vol. 33. P. 863.
  9. Kurkin A.A., Pelinovsky E.N. Waves-Slayers. Nizhniy Novgorod, 2004 (in Russian).
  10. Richardson E.G. Aeolian Tones // Proc. Phys. Soc. Lond., 1923. Vol. 36. P. 153.
  11. Landa P.S. and McClintock P.V.E. Aeolian tones and stall flutter of lengthy objects in fluid flows // Journal of Physics A: Mathematical and Theoretical. 2010. Vol. 43. 375101.
  12. Fedyaevskii K.K., Blyumina L.Kh. Hydrodynamics of Body Separation Streamline. Moscow: Mashinostroenie, 1977 (in Russian).
  13. Belotserkovsky S.M. and Ginevsky A.S. Modeling of turbulent jets and wakes by discrete vortices method. Moscow: Izd-vo «Phisiko-Matematicheskaya Literatura», 1995 (in Russian).
  14. A Modern Course of Aeroelasticity / Ed. E.H. Dowell. Kluwer Acad. Publ., 2004.
  15. Goldenblat I.I. Contemporary Problems of Vibration and Stability of Engineering Constructions. Moscow: Gosstroyizdat, 1947 (in Russian).
  16. Rocard Y. Dynamique Generale des Vibrations / Masson et Cie Editeurs. Paris, 1949.
  17. Rocard Y. Mechanical Instability / Masson et Cie Editeurs. Paris, 1954.
  18. Bisplinghoff R.L., Ashley H., Halfman R.L. Aeroelasticity. Addison–Wesley Publ. Comp. Inc., Cambridge Mass., 1955
  19. Fershing G. Principles of Aeroelasticity. Moscow: Mashinostroenie, 1984 (in Russian).
  20. Karman Th. Uber den Mechanismus des Flussigkeitsund Luftwiderstands // Phys. Z. 1912. Bd. 13. S. 49.
  21. Kazakevich M.I. Aerodynamics of Bridges. Moscow: Transport, 1987 (in Russian).
  22. Landa P.S., Trubetskov D.I. and Gusev V.A. Delusions versus reality in some physics problems: Theory and experiment // Physics–Uspekhi. 2009. Vol. 52. P. 235.
  23. Landa P.S. Self-oscillations of wire heating by electric current with the strain-resistive effect // Izv. VUZ. Applied Nonlinear Dynamics. 2008. Vol. 16, No 1. P. 19 (in Russian).
  24. Halfman R.L., Johnson H.C., Haley S.M. Evaluation of High-Angle-of-Attack Aero-Dynamic-Derivative Data and Stall-Flutter Prediction Techniques. N.A.C.A.T.N., 1951. P. 2533.
  25. Landau L.D. and Lifshitz E.M. Fluid Mechanics. Oxford: Butterworth and Heine-mann, 1987.
  26. Landa P.S. Self-Oscillatory Systems with a Finite Number of Degrees of Freedom. Moscow: URSS, 2009. PP. 54,130 (in Russian).
  27. Neimark Yu.I. Mathematical Models in Natural Science and Engineering. Berlin–Heidelberg: Springer–Verlag, 2003.
  28. Neimark Yu.I. Mathematical Modeling as a Science and Art. Nizhnii Novgorod: University Press, 2010 (in Russian).
  29. Blekhman I.I., Myshkis A.D., Panovko Ya.G. Applied Mathematics: Topic, Logic, Characteristics of Approach. With examples from mechanics. Moscow: LKI Press, 2007 (in Russian).
  30. Strouhal V. von. Uber eine Besondere Art der Tonerregung // Ann. Phys. 1878. Vol. 5. P. 216.
  31. Van der Pol B. On oscillation hysteresis in a triode generator with two degrees of freedom // Phil. Mag. 1922. Ser. 6. Vol. 43, No 256.
  32. Andronov A.A., Witt A.A. On the mathematical theory of self-oscillatory systems with two degrees of freedom // ZhTF. 1934. Vol. 4. P. 122 (in Russian).
  33. Strelkov S.P., Skibarko A.P. Qualitative investigation of the processes in a complex circuit oscillator. On the Van der Pol pulling theory // ZhTF. 1934. Vol. 4. P.158 (in Russian).
  34. Teodorchik K.F. Self-Oscillatory Systems. Moscow: Gostekhizdat, 1952 (in Russian).
  35. Landa P.S. Regular and Chaotic Oscillations. Berlin–Heidelberg: Springer–Verlag, 2001.
  36. Pavlikhina M.A., Smirnov L.P. Vortex wake at the streamline of oscillated cylinders // Izv. AN SSSR. OTN. 1958. No 8. P. 124 (in Russian).
  37. Bishop R.E.D., Hassan A.Y. The lift and drag forces on a circular cylinder in a flowing fluid // Proc. Royal Soc. Lond. 1964. Vol. A277. PP. 32,51.
  38. Blyumina L.Kh., Fedyaevskii K.K. Study of the effect of forced cylinder oscillations in air flow on the mechanism of vortex separation // Izv. AN SSSR. MZhG. 1969. No 8. P. 118 (in Russian).
  39. Landa P.S. Nonlinear Oscillations and Waves. Moscow: URSS, 2010.
  40. Fyn Ya.Ts. Introduction to the Aeroelasticity Theory. Moscow: Fizmatgiz, 1959 (in Russian).
  41. Roshko A. Experiments on the flow past a circular cylinder at very high Reynolds number // J. Fluid Mech. 1961. Vol. 10. P. 345.
  42. Neimark Yu.I., Landa P.S. Stochastic and Chaotic Oscillations. Dordrecht–Boston–London: Kluwer Academic Publishers, 1992.
  43. Landa P.S. Self-Oscillations in Distributed Systems. Moscow: URSS, 2009 (in Russian)
  44. Bogolyubov N.N. Perturbation theory in nonlinear mechanics // Sb. Instituta stroit. mekhaniki AN SSSR. Moscow, 1950. Vol. 14. P. 9 (in Russian).
  45. Bogolyubov N.N. and Mitropolsky Yu.A. Asymptotic Methods in the Theory of Nonlinear Oscillations. New York: Gordon and Breach, 1961.
  46. Mitropolsky Yu.A. Averaging Method in Nonlinear Mechanics. Kiev: Naukova Dumka, 1971 (in Russian).
  47. Poincare H. Les Methodes Nouvelles de la Mechanique Celeste. Paris: Gauthier– Villars. 1892, Vol. I; 1893, Vol. II; 1899, Vol. III.
  48. Poznyak E.L. On the faults of the small parameter method, the problems of self-oscillations in systems with two degrees of freedom // Proc. of V Int. Conf. on Nonlinear Oscillations. Kiev: Izd-vo Instituta Matematiki Akademii Nauk USSR, 1970. Vol. 3. P. 618.
Short text (in English):
(downloads: 115)