ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Emelyanov V. V. Numerical simulation of nonlinear dynamics in multiple cavity klystron oscillator with delayed feedback by the "partikle-in- cell» method. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 2, pp. 72-82. DOI: 10.18500/0869-6632-2012-20-2-72-82

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 212)
Article type: 

Numerical simulation of nonlinear dynamics in multiple cavity klystron oscillator with delayed feedback by the "partikle-in- cell» method

Emelyanov Valerij Valerevich, Saratov State University

The 1.5 D code program of numerical simulation of nonlinear nonstationary processes in the klystron-type devices based on the nonstationary L.A. Vainshtein’s theory of cavity excitation and the «particle-in-cell» method for modeling of the electron beam dynamics is developed. The results of numerical simulation of the basic oscillation modes of the fourcavity klystron oscillator with the external delayed feedback are presented. The results are qualitatively the same as were obtained previously for the simplified theoretical models of the oscillator in the form of time-delayed differential equations. These results allow also to determine the values of output parameters (power, efficiency, spectrum bandwidth, etc.) which are practically important. 

  1. Gaiduk VI, Palatov KI, Petrov DM. Physical Foundations of Microwave Electronics. Moscow: Sov. Radio; 1971. 600 p. (in Russian).
  2. Trubetskov DI, Khramov AE. Lectures on Microwave Electronics for Physicists. Vol. 1. Moscow: Fizmatlit; 2003. (in Russian).
  3. Vainshtein LA, Solntsev VA. Lectures on Microwave Electronics. Moscow: Sov. Radio; 1973. 400 p. (in Russian).
  4. Shevchik VN. Basics of microwave electronics. Moscow: Sov. radio; 1959. 307 p. (in Russian).
  5. Dmitriev BS, Zharkov YD, Ryskin NM, Shigaev AM. Chaotic Operation of a Delayed-Feedback Klystron Oscillator: Theory and Experiment. Journal of Communications Technology and Electronics. 2001;46(5):561–566.
  6. Dmitriev BS, Zharkov YuD, Kizhaeva KK, Klokotov DV, Ryskin NM, Shigaev AM. Complex dynamics of multiresonator klystron autogenerators with delayed feedback. Izvestiya VUZ. Applied Nonlinear Dynamics. 2002;10(5):37–46 (in Russian).
  7. Dmitriev BS, Zharkov YuD, Klokotov DV, Ryskin NM. Experimental study of complex dynamics in a delayed-feedback multiple-cavity klystron self-oscillator. Technical Physics. 2003;48(7):901–905. DOI: 10.1134/1.1593198.
  8. Shigaev AM, Dmitriev BS, Zharkov YD, Ryskin NM. Chaotic dynamics of delayed feedback klystron oscillator and its control by external signal. IEEE Trans. Electron Devices. 2005;52(5):790–797. DOI: 10.1109/TED.2005.845839.
  9. Ryskin NM, Shigaev AM. Complex dynamics of a double-cavity delayed feedback Klystron oscillator. Tech. Phys. 2006;51:68–77. DOI: 10.1134/S1063784206010117.
  10. Titov VN, Volkov DV, Jakovlev AV, Ryskin NM. Reflex klystron as an example of a self­-oscillating delayed feedback system. Izvestiya VUZ. Applied Nonlinear Dynamics. 2010;18(6):138–158 (in Russian). DOI: 10.18500/0869-6632-2010-18-6-138-158.
  11. Birdsall CK, Langdon AB. Plasma Physics via Computer Simulation. New York: McGraw-Hill; 1985. 
  12. Hockney R, Eastwood J. Numerical modeling by the particle method. Computer simulation using particles. McGraw Hill; 1981. 640 p.
  13. Ryskin NM, Titov VN, Yakovlev AV. Nonstationary nonlinear discrete model of a coupled-cavity traveling-wave-tube amplifier. IEEE Trans. Electron Devices. 2009;56(5):928–934. DOI: 10.1109/TED.2009.2016690.
  14. Ryskin NM, Shigaev AM. Complex dynamics of a simple distributed self-oscillatory model system with delay. Tech. Phys. 2002;47:795–802. DOI: 10.1134/1.1495037.
  15. Ryskin NM. Study of the nonlinear dynamics of a traveling-wave-tube oscillator with delayed feedback. Radiophysics and Quantum Electronics. 2004;47(2):116–128. DOI: 10.1023/B:RAQE.0000035693.16782.94.
  16. Ryskin NM, Titov VN, Han ST, So JK, Jang KH, Kang YB, Park GS. Nonstationary behavior in a delayed feedback traveling wave tube folded waveguide oscillator. Phys. Plasmas. 2004;11(3):1194-1202. DOI: 10.1063/1.1640622.
  17. Trubetskov DI, Chetverikov AP. Oscillations in extended systems «electron beam - backward electromagnetic waves». Izvestiya VUZ. Applied Nonlinear Dynamics. 1994;2(5):9–34 (in Russian).
  18. Ryskin NM, Titov VN. Self-modulation oscillatory modes in a relativistic backward-wave oscillator. Radiophysics and Quantum Electronics. 1999;42(6):500–505. DOI: 10.1007/BF02677588.
  19. Dmitrieva TV, Ryskin NM, Titov VN, Shigaev AM. Complex dynamics of simple models of extended electron-wave systems. Izvestiya VUZ. Applied Nonlinear Dynamics. 1999;7(6):66–81 (in Russian).
  20. Ryskin NM, Titov VN. On the transition to chaos scenario in one parameter model of a backward wave oscillator. Izvestiya VUZ. Applied Nonlinear Dynamics. 1998;6(1):75–92 (in Russian).
  21. Calame JP, Levush B. Impact of nonlinear memory effects on digital communications in a klystron. IEEE Trans. Electron Devices. 2009;56(5):855–863. DOI: 10.1109/TED.2009.2015804.
Short text (in English):
(downloads: 114)