For citation:
Koronovskii A. A., Rempen I. S., Hramov A. E. Numerical study of chaotic dynamics control in distributed active medium. Izvestiya VUZ. Applied Nonlinear Dynamics, 2004, vol. 12, iss. 1, pp. 51-79. DOI: 10.18500/0869-6632-2004-12-1-51-79
Numerical study of chaotic dynamics control in distributed active medium
We investigate the possibility of controlling of complex time space dynamics of distributed beam-plasma system (fluid model of Pierce diode) with the help of several methods worked out for finite-dimensional systems. In the framework of the problem we analyse the unstable time-space periodical states similar to the unstable periodical orbits observed in the systems with few degree of freedom. The method of calculating the highest Lyapunov exponent of the distributed active system is also described.
1. Rabinovich MI, Trubetskov DI. Introduction to the Theory of Vibrations and Waves. Мoscow-Izhevsk: Regular and Chaotic Dynamics; 2000. 560 p. (In Russian).
2. Kuznetsov SP. Dynamic chaos. Moscow: Fizmatlit; 2001. 296 p. (In Russian).
3. Koronovskii AA, Trubetskov DI. Nonlinear Dynamics in Action. How Ideas of Nonlinear Dynamics Penetrate Ecology, Economics and Social Sciences. The 2nd edition. Saratov: College; 2002. 324 p. (in Russian).
4. Ott E, Grebogi C, Yorke JA. Controlling chaos. Phys. Rev. Lett. 1990;64(11):1196–1199. DOI: 10.1103/PhysRevLett.64.1196.
5. Grebogi C, Оtt Е, Yorke JA. Unstable Periodic Orbits and the Dimensions оf Multifractal Chaotic Attractors. Phys. Rev. А. 1988;37(5):1711–1712. DOI: 10.1103/PhysRevA.37.1711.
6. Lathrop DP, Kostelich EJ. Characterization of аn Experimental Strange Attractor by Periodic Orbits. Phys. Rev. A. 1989;40(7):4028–4031. DOI: 10.1103/physreva.40.4028.
7. Schmelcher P, Diakonos FK. Detecting Unstable Periodic Orbits of Chaotic Dynamical Systems. Phys. Rev. Lett. 1997;79(25):4733. DOI: 10.1103/PhysRevLett.78.4733.
8. Dhamala M, Lai Y-Ch. Unstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles. Phys. Rev. Е. 1999;60(5):6176–6179.
9. Carroll TL. Approximating Chaotic Time Series through Unstable Periodic Orbits. Phys. Rev. E. 1999;59(2):1615–1621. DOI: 10.1103/PhysRevE.59.1615.
10. Gallas JAC. Infinite Hierarchies оf Nonlinearly Dependent Periodic Orbits. Phys. Rev. E. 2001;63:016216-1–016216-5. DOI: 10.1103/PhysRevE.63.016216.
11. Romeiras FJ, Grebogi C, Ott E, Dayawansa WP. Controlling Chaotic Dynamical Systems. Physica D. 1992;58(1–4): 165–192.
12. Ditto WL, Rauseo SN, Spano ML. Experimental Control оf Chaos. Phys. Кеу. Lett. 1990;65(26):3211–3214.
13. Hunt ER. Stabilizing High-period Orbits in a Chaotic System: The Diode Resonator. Phys. Rev. Lett. 1991;67(15):1953–1955. DOI: 10.1103/PhysRevLett.67.1953.
14. Bielawski S, Derozier D, Glorieux P. Experimental Characterization of Unstable Periodic Orbits by Controlling Chaos. Phys. Rev. А. 1993;47(4):R2492–R2495.
15. Shinbrot T, Оtt E, Grebogi C, Yorke JA. Using Small Perturbations to Control Chaos. Nature. 1993;363:411–417.
16. Ding M, Yang W, In V, Ditto WL. Controlling Chaos in High Dimensions: Theory and experiment. Phys. Rev. E. 1996;53(5):4334–4344. DOI: 10.1103/physreve.53.4334.
17. Friedel H., Grauer R., Spatschek H.K. Contolling Chaotic States оf а Pierce Diode. Phys. Plasmas. 1998;5(9):3187–3194.
18. Pyragas K. Continuous Control оf Chaos by Self-controlling Feedback. Phys. Lett. А. 1992;170:421–428.
19. Chen YH, Chou MY. Continuous Feedback Approach for Controlling Chaos. Phys. Rev. Е. 1994;50(3):2331–2334.
20. Gauthier DJ, Sukow DW, Concannon HP, Socolar JES. Stabilizing Unstable Periodic Orbits in a Fast Diode Resonator Using Contininuous Time-delay Autosynchronization. Phys. Rev. Е. 1994;50(3):2343–2346.
21. Elmer F-J. Controlling friction. Phys. Rev. Е. 1998;57(5):4903–4906.
22. Kouomou YC, Woafo P. Stability and Optimal Parameters for Continuous Feedback Chaos Control. Phys. Rev. В. 2002;66:036205. DOI: 10.1103/PhysRevE.66.036205.
23. Roy R, Murphy TW, Maier TD, Gills Z, Hunt ER. Dynamical Control of a Chaotic Laser: experimental stabilization of a globally coupled system. Phys. Rev. Lett. 1992;68(9):1259–1262. DOI: 10.1103/PhysRevLett.68.1259.
24. Meucci R, Gadomski W, Ciofini M, Arecchi FT. Experimental Control of Chaos by Means of Weak Parametric Perturbations. Phys. Rev. Е. 1994;49(4):R2528–R2531. DOI: 10.1103/physreve.49.r2528.
25. Meucci R., Ciofini M., Abbate R. Suppressing chaos in lasers by negative feedback // Phys. Rev. Е. 1996. Vol. 53, № 6. P. R5537–5540.
26. Tziperman E, Scher H, Zebiak SE, Cane MA. Controlling Spatiotemporal Chaos in а Realistic Е Nino prediction model. Phys. Rev. Lett. 1997;79(6):1034–1037.
27. Franceschini G, Bose S, Schéoll Е. Control оf Chaotic Spatiotemporal Spiking by Timedelay Autosynchronization. Phys. Rev. Е. 1999. Vol. 60, № 5. P. 5426–5434.
28. Lu W, Yu D, Harrison RG. Control оf Patterns in Spatiotemporal Chaos in Optics. Phys. Rev. Lett. 1996;76(18). P. 3316–3319.
29. Martin R, Scroggie AJ, Oppo GL, Firth WJ. Stabilization, Selection, and Tracking of Unstable Patterns by Fourier Space Techniques. Phys. Rev. Lett. 1996;77(19):4007–4010.
30. Gang H, Zhilin Q. Controlling Spatiotemporal Chaos in Coupled Map Lattice Systems. Phys. Rev. Lett. 1994;72(1):68–71.
31. Grigoriev КО, Cross MC, Schuster HG. Pinning Control оf Spatiotemporal Chaos. Phys. Rev. Lett. 1997;79(15):2795–2798. DOI: 10.1103/PhysRevLett.79.2795.
32. Parmananda P, Hildebrand, Eiswirth M. Controlling Turbulence in Coupled Map Lattice Systems Using Feedback Techniques. Phys. Rev. E. 1997;56(1):239–244. DOI: 10.1103/PhysRevE.56.239.
33. Montagne R, Colet P. Nonlinear Diffusion Control of Spatiotemporal Chaos in the Complex Ginzburg – Landau equation. Phys. Rev. Е. 1997;56(4):4017–4024.
34. Boccaletti S., Bragard J., Arecchi F.T. Controlling and Synchronizing Space Time Chaos. Phys. Rev. Е. 1999;59(6):6574–6578. DOI: 10.1103/PhysRevE.59.6574.
35. Bleich ME, Hochheiser D, Moloney JV, Socolar JES. Controlling Extended Systems with Spatially Filtered, Time-delayed Feedback. Phys. Rev. E. 1997;55(3):2119–2127.
36. Hochheiser D, Moloney JV, Lega J. Controlling Optical Turbulence. Phys. Rev. А. 1997;55(6):R4011–R4014.
37. Pierce J. Limiting Currents in Electron Beam in Presence Ions. J. Appl. Phys. 1944;15:721–726. DOI: 10.1063/1.1707378.
38. Trubetskov DI, Hramov АЕ. Lectures on Microwave Electronics for Physicists, Vol. 1. Moscow: Nauka: Fizmatlit; 2003. 496 p. (in Russian).
39. Nezlin NV. Dynamics of Beams in a Plasma. Moscow: Energoatom-izdat; 1982. 263 p. (in Russian).
40. Kuzelev MV, Rukhadze AA. Electrodynamics of Dense Electron Beam in Plasma. Moscow: Nauka; 1990. 333 p.
41. Kuzelev MV, Rukhadze AA, Strelkov PS. Plasma Relativistic Microwave Electronics. Moscow: Gos. Tekhn. Univ. im. N.É. Baumana; 2002.
42. Klochkov DN, Rukhadze AA. Electromagnetic theory of the radiative Pierce instability. Fiz. Plazmy. 1997;23(7):646.
43. Trubetskov DI. Nonlinear Waves, Chaos and Structures in Microwave Electronics: Review of thematic issue. Izvestiya VUZ. Applied Nonlinear Dynamics. 1994;2(5):3.
44. Godfrey В.В. Oscillatory Nonlinear Electron Flow in Pierce Diode. Phys. Fluids. 1987;30:1553–1560. DOI: 10.1063/1.866217.
45. Anfinogentov VG, Trubetskov DI. Chaotic Oscillations in the Hydrodynamic Model of the Pierce Diode. J. Commun. Technol. Electron. 1992;37:2251.
46. Kuhn S, Ender А. Oscillatory nonlinear flow and coherent structures in Pierce–type diodes. J. Appl. Phys. 1990. Vol. 68. P. 732..
47. Trubetskov DI, Mchedlova ES, Anfinogentov VG, Ponomorenko VI, Ryskin NM. Nonlinear Waves, Chaos and Patterns in Microwave Devices. Chaos. 1996;6(3):358–367. DOI: 10.1063/1.166179.
48. Trubetskov DI, Anfinogentov VG, Ryskin NM, Titov VN, Khramov AE. Complex dynamics of microwave electronic devices (nonlinear nonstationary theory from the standpoint of nonlinear dynamics). Radio Engineering. 1999;63(4):61–68 (in Russian).
49. Trubetskov DI, Anfinogentov VG, Ryskin NM, Titov VN, Khramov AE. Complex dynamics of microwave electronic devices (nonlinear nonstationary theory from the standpoint of nonlinear dynamics). Radio Engineering. 1999;63(4):61–68. (in Russian).
50. Matsumoto H., Yokoyama H., Summers D. Computer simulations оf the chaotic dynamics оf thе Pierce beam-plasma system. Phys. Plasmas. 1996;1:177.
51. Rempen IS, Khramov AE. Control of Electron Flow Oscillation Modes with Supercritical Current in a Pierce diode. Izv. Ross. Akad. Nauk, Ser. Fiz. 2001;65(12):1689.
52. Khramov AE, Rempen IS. Effect of Feedback on Complex Dynamics in the Hydrodynamic Model of a Pierce Diode. J. Commun. Technol. Electron. 2002; 47(6):732–738.
53. Roache PJ. Computational Fluid Dynamics. Moscow: Mir; 1980. 618 p.
54. Birdsall C.K, Langdon A.B. Plasma physics, via computer simulation. МУ: McGraw-Hill, 1985.
55. Khramov AE. Control of Oscillation Modes in Beams with Supercritical Current Using Various Types of Feedback. Izvestiya VUZ. Applied Nonlinear Dynamics. 2003;11(2):3.
56. Rempen IS, Khramov AE. Influence of the Degree of Electron Flow Neutralization on Nonlinear Dynamics in the Hydrodynamic Model of a Pierce Diode. J. Commun. Technol. Electron (in press).
57. Takens F. Detecting Strange Attractors in Dynamical Systems and Turbulence. Lectures Notes in Mathematics. N.Y.: Springler-Verlag; 1981:366–381.
58. Aston PJ, Marrior PK. Waiting Time Paradox Applied to Transient Times. Phys. Кеу. Е. 1998;57:1181–1182.
59. Hadyn М, Luevano J, Mantica G, Vaienti S. Multifractal Properties of Return Time Statistics. Phys. Rev. Lett. 2002;88(22):224502–224505.
60. Benettin G, Galgani L, Strelcyn J-M. Kolmogorov Entropy and Numerical Experiments. Phys. Rev. А. 1976;14:2338 –2345. DOI: 10.1103/PhysRevA.14.2338.
61. Schuster HG. Handbook of Chaos Control. Weinheim: Wiley VCH; 1999.
62. Socolar JES, Sukow DW, Gauthier DJ. Stabilizing Unstable Periodic Orbits in Fast Dynamical Systems. Phys. Rev. Е. 1994;50(4):3245–3248.
63. Bleich ME., Socolar JES. Stability оf Periodic Orbits Controlled by Time-delay Feedback. Phys. Lett. А. 1999;210:87–96.
64. Simmendinger C, Preiber Р, Hess OG. Stabilization оf Chaotic Spatiotemporal Filamentation in Large Broad Area Lasers by Spatially Structured Optical Feedback. Optics Express. 1999;5(3):48–54.
65. Kittel А, Parisi J, Pyragas K. Delayed Feedback Control оf Chaos by Selfadapted Delay Time. Phys. Lett. А. 1995. Vol. 198. P. 433–436.
- 367 reads