ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Arzhanukhina D. S. On scenarios of hyperbolic chaos destruction in model maps on torus with dissipative perturbation. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 1, pp. 117-123. DOI: 10.18500/0869-6632-2012-20-1-117-123

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 143)
Article type: 

On scenarios of hyperbolic chaos destruction in model maps on torus with dissipative perturbation

Arzhanukhina Darja Sergeevna, Saratov State University

In this paper we investigate modified «Arnold cat» map with dissipative terms, in which a hyperbolic chaos exists for small perturbation magnitudes, and in a certain range a hyperbolic chaotic attractor with Cantor transversal structure takes place, collapsing with a further perturbation amplitude increase.

  1. Kuznetsov SP. Dynamical Chaos: Course of Lectures. Moscow: Fizmatlit; 2001. 296 p. (in Russian).
  2. Berger P, Pomo I, Vidal K. Order in chaos. About the deterministic approach to turbulence. Moscow: Mir; 1991. 368 p. (in Russian).
  3. Schuster G. Deterministic Chaos. An Introduction. Moscow: Mir; 1988. 240 p. (in Russian).
  4. Lichtenberg AJ, Lieberman MA. Regular and Stochastic Motion. New York: Springer-Verlag; 1983. 499 p.
  5. Anishchenko VS, Vadivasova TE, Astakhov VV. Nonlinear dynamics of chaotic and stochastic systems. Fundamental principles and selected issues. Saratov: Saratov Univ. Publ.; 1999. 368 p.
  6. Kuznetsov SP. Hyperbolic strange attractors of physically realizable systems. Izvestiya VUZ. Applied Nonlinear Dynamics. 2009;17(4):5–34 (in Russian). DOI: 10.18500/0869-6632-2009-17-4-5-34.
  7. Kuznetsov SP. An example of a non-autonomous continuous-time system with attractor of Plykin type in the Poincare map. Nelin. Dinam. 2009;5(3):403–424 (in Russian).
  8. Kuznetsov SP. Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics. Phys. Usp. 2011;54(2):119–144. DOI: 10.3367/UFNe.0181.201102a.0121.
  9. Kuznetsov SP, Seleznev EP. A strange attractor of the Smale-Williams type in the chaotic dynamics of a physical system. Journal of Experimental and Theoretical Physics. 2006;102(2):355–364. DOI: 10.1134/S1063776106020166.
  10. Belykh V, Belykh I, Mosekilde E. Hyperbolic Plykin attractor can exist in neuron models. International Journal of Bifurcation and Chaos. 2005;15(11):3567–3578. DOI: 10.1142/S0218127405014222.
  11. Katok A, Hasselblatt B. Introduction to the Modern Theory of Dynamical Systems. Cambridge: Cambridge University Press; 1999. 768 p.
Short text (in English):
(downloads: 97)