ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Lyapunov exponent

Self-oscillating system generating rough hyperbolic chaos

Topic and aim. The aim of the work is design of rough chaos generator, whose attractor implements dynamics close to Anosov flow on a manifold of negative curvature, as well as constructing and analyzing mathematical model, and
conducting circuit simulation of the dynamics using the Multisim software.

Investigated models. A mathematical model is considered that is a set of ordinary differential equations of the ninth order with algebraic nonlinearity, and a circuit representing the chaos generator is designed.

Dynamics of weakly dissipative self-oscillatory system at external pulse influence, which amplitude is depending polynomially on the dynamic variable

Topic and aim. In this work, we study the dynamics of the kicked van der Pol oscillator with the amplitude of kicks depending nonlinearly on the dynamic variable. We choose the expansions of the function cos x in a Taylor series near zero, as functions describing this dependence.

Uniformly hyperbolic attractor in a system based on coupled oscillators with «figure-eight» separatrix

A new autonomous system with chaotic dynamics corresponding to Smale–Williams attractor in Poincare map is introduced. The system is constructed on the basis of the model with «figure-eight» separatrix on the phase plane discussed in former times by Y.I. Neimark. Our system is composed of two Neimark subsystems with generalized coordinates x and y. It is described by the equations with additional terms due to which the system becomes self-oscillating.

BELYKH ATTRACTOR IN ZASLAVSKY MAP AND ITS TRANSFORMATION UNDER SMOOTHING

If we allow non-smooth or discontinuous functions in definition of an evolution operator for dynamical systems, then situations of quasi-hyperbolic chaotic dynamics often occur like, for example, on attractors in model Lozi map and in Belykh map.