For citation:
Koronovskii A. A., Moskalenko O. I., Selskii A. O. On the probabilistic description of the asynchronous phases occurrence in intermittent generalized synchronization regime of one-dimensional maps. Izvestiya VUZ. Applied Nonlinear Dynamics, 2025, vol. 33, iss. 2, pp. 153-164. DOI: 10.18500/0869-6632-003149, EDN: DCOYIK
On the probabilistic description of the asynchronous phases occurrence in intermittent generalized synchronization regime of one-dimensional maps
The purpose of the present study is to explain and describe (with the help of the probabilistic model) the process of breaking the stage of synchronous behavior and the emergence of a section of asynchronous dynamics in the regime of intermittent generalized chaotic synchronization in one-dimensional dynamical systems with discrete time.
Methods. In this paper, a probabilistic model is used to quantitatively describe the observed characteristics of the behavior of two unidirectionally coupled systems being near the onset of the synchronous regime.
Results. An analytical expression for the probability to observe the destruction of the synchronous phase on an interval of fixed duration under the assumption of uniformly distributed variable, as well as the form of the probability density function of the system state for the destruction intervals of synchronous dynamics are obtained.
Conclusion. The paper presents quantitative estimates of the process of destruction of synchronous behavior in the regime of intermittent generalized chaotic synchronization for one-dimensional dynamical systems with discrete time. The generality of processes near the boundary of the synchronous motion for generalized chaotic synchronization and noise-induced synchronization is shown.
- Pikovsky AS, Osipov GV, Rosenblum MG, Zaks M, Kurths J. Attractor-repeller collision and eyelet intermittency at the transition to phase synchronization. Phys. Rev. Lett. 1997;79(1):47–50. DOI: 10.1103/PhysRevLett.79.47.
- Boccaletti S, Allaria E, Meucci R, Arecchi FT. Experimental characterization of the transition to phase synchronization of chaotic CO2 laser systems. Phys. Rev. Lett. 2002;89(19):194101. DOI: 10.1103/PhysRevLett.89.194101.
- Hramov AE, Koronovskii AA, Kurovskaya MK, Boccaletti S. Ring intermittency in coupled chaotic oscillators at the boundary of phase synchronization. Phys. Rev. Lett. 2006;97(11):114101. DOI: 10.1103/PhysRevLett.97.114101.
- Rosenblum MG, Pikovsky AS, Kurths J. From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 1997;78(22):4193–4196. DOI: 10.1103/PHYSREVLETT.78.4193.
- Boccaletti S, Valladares DL. Characterization of intermittent lag synchronization. Phys. Rev. E. 2000;62(5):7497–7500. DOI: 10.1103/PhysRevE.62.7497.
- Pyragas K. Properties of generalized synchronization of chaos. Nonlinear Analysis: Modelling and Control. 1998;IMI(3):101–129. DOI: 10.15388/NA.1998.3.0.15261.
- Hramov AE, Koronovskii AA. Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators. Europhysics Lett. 2005;70(2):169–175. DOI: 10.1209/epl/i2004-10488-6.
- Koronovskii AA, Moskalenko OI, Pivovarov AA, Khanadeev VA, Hramov AE, Pisarchik AN. Jump intermittency as a second type of transition to and from generalized synchronization. Phys. Rev. E. 2020;102(1):012205. DOI: 10.1103/PhysRevE.102.012205.
- Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HDI. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E. 1995;51(2):980–994. DOI: 10.1103/PhysRevE.51.980.
- Rulkov NF. Images of synchronized chaos: Experiments with circuits. Chaos. 1996;6(3):262–279. DOI: 10.1063/1.166174.
- Pyragas K. Weak and strong synchronization of chaos. Phys. Rev. E. 1996;54(5):R4508–R4511. DOI: 10.1103/PhysRevE.54.R4508.
- Pyragas K. Conditional Lyapunov exponents from time series. Phys. Rev. E. 1997;56(5):5183–5188. DOI: 10.1103/PhysRevE.56.5183.
- Koronovskii AA, Moskalenko OI, Hramov AE. Nearest neighbors, phase tubes, and generalized synchronization. Phys. Rev. E. 2011;84(3):037201. DOI: 10.1103/PhysRevE.84.037201.
- Abarbanel HDI, Rulkov NF, Sushchik MM. Generalized synchronization of chaos: The auxiliary system approach. Phys. Rev. E. 1996;53(5):4528–4535. DOI: 10.1103/PhysRevE.53.4528.
- Berge P, Pomeau Y, Vidal C. Order within Chaos. New York: John Wiley and Sons; 1984. 329 p.
- Manneville P, Pomeau Y. Different ways to turbulence in dissipative dynamical systems. Physica D. 1980;1(2):219–226. DOI: 10.1016/0167-2789(80)90013-5.
- Koronovskii AA, Moskalenko OI, Selskii AO. Intermittent generalized synchronization and modified system approach: Discrete maps. Phys. Rev. E. 2024;109:064217. DOI: 10.1103/PhysRevE.109.064217.
- Hramov AE, Koronovskii AA, Moskalenko OI. Are generalized synchronization and noise-induced synchronization identical types of synchronous behavior of chaotic oscillators? Phys. Lett. A. 2006;354(5–6):423–427. DOI: 10.1016/j.physleta.2006.01.079.
- Hramov AE, Koronovskii AA. Generalized synchronization: a modified system approach. Phys. Rev. E. 2005;71(6):067201. DOI: 10.1103/PhysRevE.71.067201.
- Herzel H, Freund J. Chaos, noise, and synchronization reconsidered. Phys. Rev. E. 1995;52(3):3238–3241. DOI: 10.1103/PHYSREVE.52.3238.
- Shuai JW, Wong KW. Noise and synchronization in chaotic neural networks. Phys. Rev. E. 1998;57(6):7002–7007. DOI: 10.1103/PhysRevE.57.7002.
- Pakdaman K, Mestivier D. Noise induced synchronization in a neuronal oscillator. Physica D. 2004;192(1):123–137. DOI: 10.1016/j.physd.2003.12.006.
- 350 reads