ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

The article published as Early Access!

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Article type: 

On the relationship between the observed dynamics of a colorimetric indicator and the nonlinear dynamics of the population growth under study in the case of microbial cultures

Postnikov Eugene B, Kursk State University

The resazurin test is one of the most widespread approaches for studying the growth and metabolic activity of microorganisms. It is based on the colour change of the blue indicator, resazurin, to its pink reduced form, resorufin due to the reduction process catalyzed by the metabolic activity. At the same time, the quantitative characterization of the process needs to take into account the fact that one registers the results of the chemical transformation, which can differ from the underlying kinetics of the population growth.

Purpose. The principal goal of this work is a sequential modelling of both coupled nonlinear growth processes aimed at obtaining the closed-form solution depending on the specificity and parameters of biological and chemical counterparts and its comparison with the curves obtained experimentally.

Methods. The indicator concentration change is derived under the assumption of the logistic bacterial growth catalyzing the unidirectional chemical reaction considered and compared with the photometrically registered growth curve for a population of lactobacteria.

Results. It is revealed that the biochemical growth curve will be logistic too only in the case of specially coordinated kinetic parameters and the systems’ carrying capacity. Otherwise, another functional form should be used to approximate the observable dynamics.

Conclusion. Thus, the main conclusion consists of drawing attention to the importance of distinguishing between the underlying microbial and observable chemical growth curves. Their difference affects the value of the population growth rate, which is the target of such tests, and, therefore, the proper functional form should be used for the experimental data regression.

  1. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L. Cell viability assays. In: Assay Guidance Manual [Internet]. Bethesda, MD: Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2016. Available from:
  2. Prabst K, Engelhardt H, Ringgeler S, Hubner H. Basic colorimetric proliferation assays: MTT, WST, and Resazurin. In: Gilbert DF, Friedrich O, editors. Cell Viability Assays: Methods and Protocols. New York, NY: Humana Press; 2017. P. 1–17. DOI: 10.1007/978-1-4939-6960-9_1.
  3. Kim D-M, Yoo S-M. Colorimetric systems for the detection of bacterial contamination: Strategy and applications. Biosensors. 2022;12(7):532. DOI: 10.3390/bios12070532.
  4. Zhang X, Jiang X, Hao Z, Qu K. Advances in online methods for monitoring microbial growth. Biosensors and Bioelectronics. 2019;126:433–447. DOI: 10.1016/j.bios.2018.10.035.
  5. Monod J. The growth of bacterial cultures. Annual Review of Microbiology. 1949;3:371–394. DOI: 10.1146/annurev.mi.03.100149.002103.
  6. Zwietering MH, Jongenburger I, Rombouts FM, van’t Riet K. Modeling of the bacterial growth curve. Applied and Environmental Microbiology. 1990;56(6):1875–1881. DOI: 10.1128/aem. 56.6.1875-1881.1990.
  7. Peleg M, Corradini MG. Microbial growth curves: What the models tell us and what they cannot. Critical Reviews in Food Science and Nutrition. 2011;51(10):917–945. DOI: 10.1080/10408398. 2011.570463.
  8. Gerlier D, Thomasset N. Use of MTT colorimetric assay to measure cell activation. Journal of Immunological Methods. 1986;94(1–2):57–63. DOI: 10.1016/0022-1759(86)90215-2.
  9. Garland JL, Mills AL. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology. 1991;57(8):2351–2359. DOI: 10.1128/aem.57.8.2351-2359.1991.
  10. Lonsdale CL, Taba B, Queralto N, Lukaszewski RA, Martino RA, Rhodes PA, Lim SH. The use of colorimetric sensor arrays to discriminate between pathogenic bacteria. PLoS ONE. 2013;8(5):e62726. DOI: 10.1371/journal.pone.0062726.
  11. Worth RM, Espina L. ScanGrow: Deep learning-based live tracking of bacterial growth in broth. Frontiers in Microbiology. 2022;13:900596. DOI: 10.3389/fmicb.2022.900596.
  12. Thanasirikul C, Patumvan A, Lipsky D, Bovonsombut S, Singjai P, Boonchieng E, Chitov T. Rapid assessment and prediction of microbiological quality of raw milk using machine learning based on RGB-colourimetric resazurin assay. International Dairy Journal. 2023;146:105750. DOI: 10.1016/j.idairyj.2023.105750.
  13. Lindstrom JE, Barry RP, Braddock JF. Microbial community analysis: a kinetic approach to constructing potential C source utilization patterns. Soil Biology and Biochemistry. 1998;30(2):231– 239. DOI: 10.1016/S0038-0717(97)00113-2.
  14. Gomez-Acata RV, Neria-Gonzalez MI, Aguilar-Lopez R. Robust software sensor design for the state estimation in a sulfate-reducing bioreactor. Theoretical Foundations of Chemical Engineering. 2016;50(1):67–75. DOI: 10.1134/S0040579516010036.
  15. Lavrova AI, Dogonadze MZ, Sychev AV, Manicheva OA, Postnikov EB. Ensemble density dependent synchronization of mycobacterial growth: BACTEC MGIT 960 fluorescence-based analysis and mathematical modelling of coupled biophysical and chemical processes. AIMS Microbiology. 2022;8(2):208–226. DOI: 10.3934/microbiol.2022017.
  16. Njoku DI, Guo Q, Dai W, Chen JL, Mao G, Sun Q, Sun H, Peng Y-K. The multipurpose application of resazurin in micro-analytical techniques: Trends from the microbial, catalysis and single molecule detection assays. TrAC Trends in Analytical Chemistry. 2023;167:117288. DOI: 10.1016/j.trac.2023.117288.
  17. Rampersad SN. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors. 2012;12(9):12347–12360. DOI: 10.3390/ s120912347.
  18. Candeias LP, MacFarlane DPS, McWhinnie SLW, Maidwell NL, Roeschlaub CA, Sammes PG, Whittlesey R. The catalysed NADH reduction of resazurin to resorufin. Journal of the Chemical Society, Perkin Transactions 2. 1998;(11):2333–2334. DOI: 10.1039/A806431H.
  19. Chen JL, Steele TWJ, Stuckey DC. Modeling and application of a rapid fluorescence-based assay for biotoxicity in anaerobic digestion. Environmental Science & Technology. 2015;49(22):13463– 13471. DOI: 10.1021/acs.est.5b03050.
  20. Sychev AV, Lavrova AI, Dogonadze MZ, Postnikov EB. Establishing compliance between spectral, colourimetric and photometric indicators in Resazurin reduction test. Bioengineering. 2023;10(8):962. DOI: 10.3390/bioengineering10080962.
  21. Mouton JW, Vinks AA. Pharmacokinetic/pharmacodynamic modelling of antibacterials in vitro and in vivo using bacterial growth and kill kinetics. Clinical Pharmacokinetics. 2005;44(2):201–210. DOI: 10.2165/00003088-200544020-00005.
  22. Richards FJ. A flexible growth function for empirical use. Journal of Experimental Botany. 1959;10(2):290–301. DOI: 10.1093/jxb/10.2.290.
  23. AlamarBlue® Assay [Internet]. U.S. Patent No. 5,501,959. PI-DAL1025/1100Rev 1.0. 2008. 27 p. Available from:
  24. Von Groll A, Martin A, Portaels F, da Silva PEA, Palomino JC. Growth kinetics of Mycobacterium tuberculosis measured by quantitative resazurin reduction assay: a tool for fitness studies. Brazilian Journal of Microbiology. 2010;41(2):300–303. DOI: 10.1590/S1517-83822010000200006.
  25. Sychev AV, Belenkov RN, Ukolov DN, Budaev AV, Lavrova AI, Postnikov EB. Revealing kinetics of chemical transitions in colorimetric indicators of microorganisms growth based on photometric data from a portable microbiological analyser. In: Proc. SPIE. Vol. 12194. Computational Biophysics and Nanobiophotonics. SPIE; 2022. P. 121940Z. DOI: 10.1117/12.2625794.
  26. Neufeld BH, Tapia JB, Lutzke A, Reynolds MM. Small molecule interferences in Resazurin and MTT-based metabolic assays in the absence of cells. Analytical Chemistry. 2018;90(11):6867– 6876. DOI: 10.1021/acs.analchem.8b01043.
  27. Fukushima RS, Weimer PJ, Kunz DA. Photocatalytic interaction of Resazurin N-oxide with cysteine optimizes preparation of anaerobic culture media. Anaerobe. 2002;8(1):29–34. DOI: 10.1006/anae.2001.0405.
  28. Baranyi J, Roberts TA. A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology. 1994;23(3–4):277–294. DOI: 10.1016/0168-1605(94)90157-0.
  29. Rickett LM, Pullen N, Hartley M, Zipfel C, Kamoun S, Baranyi J, Morris RJ. Incorporating prior knowledge improves detection of differences in bacterial growth rate. BMC Systems Biology. 2015;9:60. DOI: 10.1186/s12918-015-0204-9.
  30. Atolia E, Cesar S, Arjes HA, Rajendram M, Shi H, Knapp BD, Khare S, Aranda-Diaz A, Lenski RE, Huang KC. Environmental and physiological factors affecting high-throughput measurements of bacterial growth. MBio. 2020;11(5):e01378-20. DOI: 10.1128/mBio.01378-20.
  31. Giraud E, Lelong B, Raimbault M. Influence of pH and initial lactate concentration on the growth of Lactobacillus plantarum. Applied Microbiology and Biotechnology. 1991;36(1):96–99. DOI: 10.1007/BF00164706.
  32. da Silva APR, Longhi DA, Dalcanton F, de Aragao GMF. Modelling the growth of lactic acid bacteria at different temperatures. Brazilian Archives of Biology and Technology. 2018;61: e18160159. DOI: 10.1590/1678-4324-2018160159.
Available online: