ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Chernavskaya O. D., Chernavskii D. S., Karp V. P., Nikitin A. P. On the role of «pattern» and «symbol» concepts for simulation of the thinking process via neurocomputing. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 6, pp. 5-20. DOI: 10.18500/0869-6632-2011-19-6-5-20

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 238)
Language: 
Russian
Article type: 
Article
UDC: 
004.81

On the role of «pattern» and «symbol» concepts for simulation of the thinking process via neurocomputing

Autors: 
Chernavskaya Olga Dmitrievna, P.N. Lebedev Physical Institute of the Russian Academy of Sciences
Chernavskii Dmitry Sergeevich, P.N. Lebedev Physical Institute of the Russian Academy of Sciences
Karp Viktorija Pavlovna, P.N. Lebedev Physical Institute of the Russian Academy of Sciences
Nikitin Aleksandr Pavlovich, P.N. Lebedev Physical Institute of the Russian Academy of Sciences
Abstract: 

The concepts of «pattern» and «symbol» and their functions are discussed in the context of «thinking» system of combined neuroprocessors. It is shown that the pattern subsystem does play a key role in recording and store of information. The symbol subsystem initiation provides the transition to conventional semantic information and communications with environment. The paradigm of attention within the scheme presented is secured by a parametric effect of symbol subsystem on the image one. It is shown that effect of neuron specification\\specialization is reproduced due to self-organization of the whole system. The system of dynamical nonlinear equations is proposed to combine the pattern and symbol subsystems and thus, to describe the «train of thought» within an individual thinking system. 

Reference: 
  1. Chernavskii DS, Karp VP, Rodshtat IV, Nikitin AP, Chernavskaya NM. Recognition. Autodiagnostics. Thinking. Moscow: Radiotekhnika; 2003. 270 p. (in Russian).
  2. Chernavskaya OD, Nikitin AP, Chernavskii DS. The concept of intuitive and logical in neurocomputing. Biophysics. 2009;54(6):1103 (in Russian).
  3. Chernavskaya OD, Chernavskii DS, Karp VP, Nikitin AP, Rozhilo YA. Thinking process in the context of dynamic information theory. Part I: The main goals and objectives of thinking. Preprints of Physical Institute named after P. N. Lebedev; 2011. No. 10. 20 p. (in Russian).
  4. Chernavskii DS. Synergetics and Information: Dynamic Information Theory. Мoscow: Nauka; 2001. 304 p. (in Russian).
  5. Aleksandrov YI, Anokhin KV, Bezdenezhnykh BN, Garina NS, Grechenko TN, Latanov AV, Palikhova TA, Saveliev SV, Sokolov EN, Tushmalova NA, Filippov VA, Chernorizov AM. Neuron. Signal Processing. Plastic. Modeling. Fundamental Leadership. Tyumen: TSU Publishing; 2008. 548 p. (in Russian).
  6. Fitz Hugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1961;1(6):445–466. DOI: 10.1016/S0006-3495(61)86902-6.
  7. Nagumo J, Arimoto S, Yashukawa S. An active pulse transmission line simulating nerve axon. Proc. IRE. 1962;50(10):2061–2070. DOI: 10.1109/JRPROC.1962.288235.
  8. Shamis AS. Ways of Modeling Thinking. Active Synergistic Neural Networks, Thinking and Creativity, Formal Models of Behavior and «Recognition With Understanding». Moscow: KomKniga; 2006. 336 p. (in Russian).
  9. Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. PNAS. 1982;79(8):2554–2558. DOI: 10.1073/pnas.79.8.2554.
  10. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics. 1943;5(4):115–133. DOI: 10.1007/BF02478259.
  11. Muller B, Reinhardt J. Neural Networks. Berlin: Springer; 1990. 331 p.
  12. Grossberg S. Studies of Mind and Brain. Boston: Riedel; 1982. 662 p. DOI: 10.1007/978-94-009-7758-7.
  13. Grossberg S. The Adaptive Brain. Amsterdam: Elsevier; 1987. 496 p.
  14. Chernavskii DS, Karp VP, Vasiliev AN, Chernavskaya OD. Mathematical model of the image localization processor. Preprints of Physical Institute named after P. N. Lebedev; 2011. No. 9. 17 p. (in Russian).
  15. Chernavskij DS, Karp VP, Nikitin AP, Chernavskaja OD. The construction scheme of neuroprocessors able to realize the basic functions of thinking and scientific creativity. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(6):21–35 (in Russian). DOI: 10.18500/0869-6632-2011-19-6-21-35.
  16. Yakhno VG, Polevaya SA, Parin SB. The basic architecture of the system describing the neurobiological mechanisms of sensory signal awareness. In: Alexandrova YI, Sokolov VD, editors. Cognitive Research: Collection of Scientific Papers. Vol. 4. Moscoe: Publishing House «Institute of Psychology RAS»; 2010. P. 273–301 (in Russian).
Received: 
13.07.2011
Accepted: 
13.07.2011
Published: 
29.02.2012
Short text (in English):
(downloads: 109)