For citation:
Matrosov V. V., Kasatkin D. V. Particularities of dynamics of three cascade-coupled phase-locked loops. Izvestiya VUZ. Applied Nonlinear Dynamics, 2004, vol. 12, iss. 1, pp. 159-168. DOI: 10.18500/0869-6632-2004-12-1-159-168
Particularities of dynamics of three cascade-coupled phase-locked loops
Results of investigations of dynamic modes of three phase-locked loops are presented. The influence of coupling parameters and initial frequency mismatch on synchronous and quasi-synchronous modes is studied. Domains of quasi-synchronous oscillations of controlled oscillators are allocated in the parameter space. The comparative analysis of dynamics of ensembles, consisting of two and three oscillators is carried out.
1. Korzinova MV, Matrosov VV. Modeling of Nonlinear Dynamics of Phase-system Cascading. Radiophysics and Quantum Electronics. 1993;36(8): 555–558. DOI: 10.1007/BF01038435.
2. Matrosov VV, Korzinova MV. Cooperative Dynamics of Cascade Coupling Phase Systems. Izvestiya VUZ. Applied Nonlinear Dynamics. 1994;2(2):10–16.
3. Matrosov VV. Some Features of Dynamic Behavior of Cascade Connection of Two Phase Systems. Izvestiya VUZ. Applied Nonlinear Dynamics. 1997;5(6):52.
4. Matrosov VV, Kasatkin DV. The dynamics of three cascade coupled phase systems. In: Proceedings of the International Conference «Progress in Nonlinear Science» dedicated to the 100th Anniversary оf AA Andronov. 2–6 July 2001, Nizhny Novgorod, Russia. Nizhni Novgorod, 2002. Vol. 2. P. 225–231.
5. Matrosov VV, Kasatkin DV. Динамические режимы связанных генераторов с фазовым управлением // J. Commun. Technol. Electron. 2003;48(6):698.
6. Matrosov VV, Kasatkin DV. An Analysis of Excitation of Chaotic Oscillations in Coupled Generators with the Phase Control. Izvestiya VUZ. Applied Nonlinear Dynamics. 2003;11(4–5):31–43.
7. Matrosov М, Kasatkin DV. Collective dynamics оf small ensembles оf coupled PLL systems. In: Proceedings of the International Symposium «Topical Problems of Nonlinear Wave Physics. NWP-1: Nonlinear Dynamics and Information». IAP RAS, Nizhny Novgorod, 2003. P.137.
8. Lindsay V. Synchronization Systems in Communication and Control [Russian translation]. Moscow: Sovetskoe Radio, 1978. 600 p.
9. Anderson P.M., Found A.A. Power system control and stability. NY: IEEE Press, 1994.
10. Dmitriev AS, Panas AI, Starkov SO. Dynamic Chaos as a Paradigm for Modern Communication Systems. Zarubezh. Radioélektron. Usp. Sovrem. Radioélektron. 1997;10:4–26.
11. Shalfeev VD, Matrosov VV, Korzinova MV. Dynamic chaos in ensembles of coupled phase systems. Zarubezh. Radioelektron. Usp. Sovrem. Radioelektron. 1998;11:44-56. (in Russian)
12. Shalfeev VD, Matrosov VV, Korzinova MV. Controlling Chaos and Bifurcations in Engineering Systems. Воса – Raton – London – New York – Washington, D.C.: С. Chen. CRC Press; 2000. P. 529.
13. Afraimovich VS, Nekorkin VI, Osipov GV, Shalfeev VD. Stability, Structures and Chaos in Nonlinear Synchronization Networks. Nizhny Novgorod: Institute of Applied Physics of the Russian Academy of Sciences; 1989. (in Russian).
14. Andronov AA, Vitt AA, Khaikin SE. Theory of oscillations. Moscow: Fizmatgiz, 1959. 915 с.
15. Matrosov VV. Dynamics of nonlinear systems. A software package for the study of nonlinear dynamical systems with continuous time. Educational and methodological development. Nizhny Novgorod: Publishing House of UNN; 2002. 54 p. (in Russian).
- 426 reads