For citation:
Kuznetsov S. P. Period-doubling for complex cubic map. Izvestiya VUZ. Applied Nonlinear Dynamics, 1996, vol. 4, iss. 4, pp. 3-12.
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language:
Russian
Heading:
Article type:
Article
UDC:
517.9
Period-doubling for complex cubic map
Autors:
Kuznetsov Sergey Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract:
Scaling properties are reported for period-doubling cascade in complex cubic map z -> c-z^3. Renormalization group analysis is developed and the associated complex solution of the Feigenbaum - Cvitanovic equation is obtained numerically.
Key words:
Acknowledgments:
The author is grateful to Professor Predrag Cvitanovic (Niels Bohr Institute, Copenhagen) and Professor Bodil Brunner (Technical University of Denmark) for useful discussions.
The work was carried out with financial support from the Russian Foundation for Basic Research (project № 95-02-05818).
Reference:
- Mandelbrot BB. The Fractal Geometry of Nature. S.F.: Freeman; 1982. 460 p.
- Peitgen Н-О, Richter PH. The Beauty of Fractals. Images of Complex Dynamical Systems. Berlin: Springer; 1986. 214 p.
- Blanchard P. Complex analytic dynamics on the Riemann sphere. Bull. Amer. Math. Soc. 1984;11:85-141. DOI: 10.1090/S0273-0979-1984-15240-6.
- Yang CN, Lee TD. Statistical theory of equations of state and phase transitions. II. Lattice gas and ising model. Phys. Rev. 1952;87(3):410-419. DOI: 10.1103/PhysRev.87.410.
- Lee TD, Yang CN. Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev. 1952;87(3):404-409. DOI: 10.1103/PhysRev.87.404.
- Derrida B, De Seze L, Itzykson С. Fractal structure of zeros in hierarchical models. J. Stat. Phys. 1983;33:559-569. DOI: 10.1007/BF01018834.
- Goldberg АI, Sinai YaT, Khanin KM. Universal properties for sequences of bifurcations of period three. Rus. Math. Surv. 1983;38(1):187-188. DOI: 10.1070/RM1983v038n01ABEH003398.
- Cvitanovic Р, Myrheim J. Universality for period n-tuplings in complex mappings. Phys. Lett. A. 1983;94(8):329-333. DOI: 10.1016/0375-9601(83)90121-4.
- Cvitanovic Р, Myrheim Complex universality. Commun. Math. Phys. 1989;121(2):225-254. DOI: 10.1007/BF01217804.
- Feigenbaum MJ. Quantitative Universality for a Class of Nonlinear Transformations. J. Stat. Phys. 1978;19:25-52. DOI: 10.1007/BF01020332.
- Feigenbaum MJ. The universal metric properties of nonlinear transformations. J. Stat. Phys. 1979;21:669-706. DOI: 10.1007/BF01107909.
- Lanford OE. A computer-assisted proof of the Feigenbaum conjectures. Bull. Amer. Math. Soc. 1982:6:427-434. DOI: 10.1090/S0273-0979-1982-15008-X.
- Epstein H, Lascoux J. Analyticity properties of the Feigenbaum function. Commun. Math. Phys. 1981;81:437-453 DOI: 10.1007/BF01209078.
- Devaney RL. An Introduction to Chaotic Dynamical Systems. Reading: Addison-Wesley; 1989. 360 p.
- Feigenbaum MJ. The Transition to Aperiodic Behaviour in Turbulent Systems. Commun. Math. Phys.1980;77:65-86. DOI: 10.1007/BF01205039.
- Kuznetsov AP, Kuznetsov SP, Sataev IR. Influence of a fractal signal on a Feigenbaum system and bifurcation in renormalization group equations. Radiophys. Quantum Electron. 1991;34:556-563. DOI: 10.1007/BF01039580.
- Kuznetsov АР, Kuznetsov SP, Sataev IR. Period doubling system under fractal signal. Bifurcation in the renormalization group equation. Chaos, Solitons & Fractals. 1991;1(4):355-367. DOI: 10.1016/0960-0779(91)90026-6.
- Halsey TS, Jensen MH, Kadanoff LP, Procaccia I, Shraiman В. Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A. 1986;33:1141-1151. DOI: 10.1103/physreva.33.1141.
- Schiroeder M. Fractals, Chaos, Power Laws. N.Y.: WH Freeman; 1991. 429 p.
- Chang SJ, Wortis M, Wright JA. Iterative properties of a one-dimensional quartic map: Critical lines and tricritical behavior. Phys. Rev. A. 1981;24(5):2669-2684. DOI: 10.1103/PhysRevA.24.2669.
- Fraser S, Kapral R. Universal vector scaling in one-dimensional maps. Phys. Rev. A. 1984;30(2):1017-1025. DOI: 10.1103/PhysRevA.30.1017.
- MacKay RS, Van Zeijts JB. Period doubling for bimodal maps: a horseshoe for a renormalisation operator. Nonlinearity. 1988;1:253-277. DOI: 10.1088/0951-7715/1/1/011.
- Kuznetsov AP, Kuznetsov SP, Sataev IR, Chua LO. Two-parameter study of transition to chaos in Chua’s circuit: Renormalization group, universality and scaling. Int. J. Bif. Chaos. 1993;3(4):943–962. DOI: 10.1142/S0218127493000799.
- Kuznetsov AP, Kuznetsov SP, Sataev IR. Three-parameter scaling for оne-dimensional maps. Phys. Lett. А. 1994;189(5):367-373. DOI: 10.1016/0375-9601(94)90018-3.
Received:
18.10.1996
Accepted:
15.11.1996
Published:
10.12.1996
Journal issue:
- 143 reads