For citation:
Anikin V. M., Trubetskov D. I. Problems of deterministic chaos theory in А. F. Goloubentsev’s works. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 5, pp. 120-123. DOI: 10.18500/0869-6632-2013-21-5-120-123
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 143)
Language:
Russian
Article type:
Personalia
UDC:
519.24
Problems of deterministic chaos theory in А. F. Goloubentsev’s works
Autors:
Anikin Valerij Mihajlovich, Saratov State University
Trubetskov Dmitriy Ivanovich, Saratov State University
Abstract:
A short review of contribution to the deterministic chaos theory, that had been made by professor Alexander F. Goloubentsev (Saratov University), is given.
Reference:
- Anikin VM, Gulyaev UV, Trubetskov DI. and others. In memory of Alexander Fedorovich Golubentsev. Radiotehnika and electronika. 2004;49(3):383–384.
- Babenko KI. Fundamentals of Numerical Analysis. Moscow: Nauka; 1986. 743 p. (In Russian).
- Golubentsev AF, Anikin VM. Euclid, Gauss and deterministic chaos. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2003;3(2):166–176.
- Anikin VM. Gaussian Mapping: Evolutionary and Probabilistic Properties. Saratov: Saratov University Publishing; 2007. 80 p. (In Russian).
- Goloubentsev AF, Anikin VM, Arkadaksky SS. On some properties of the Frobenius - Perron operator for the Bernoulli shifts. Izvestiya VUZ. Applied Nonlinear Dynamics. 2000;8(2):67–73.
- Golubencev AF, Anikin VM. Invariant subspaces for linear evolution operators of chaotic maps. Izvestiya VUZ. Applied Nonlinear Dynamics. 2005;13(1-2):3-17. DOI: 10.18500/0869-6632-2005-13-1-3-37.
- Anikin VM, Golubentsev AF. Analytical models of deterministic chaos. Ed. Trubetskov DI. Moscow: Fizmatlit; 2007. 328 p. (In Russian).
- Anikin VM, Arkadakskij SS, Remizov AS. Analytical solution of spectral problem for the Perron – Frobenius operator of piece-wise linear chaotic maps. Izvestiya VUZ. Applied Nonlinear Dynamics. 2006;14(2):16–34. DOI: 10.18500/0869-6632-2006-14-2-16-34.
- Anikin VM, Arkadaksky SS, Remizov AS. FEATURES OF SOLVING SPECTRAL PROBLEM FOR THE PERRON-FROBENIUS OPERATOR, CAUSED BY CRITICAL COMBINATIONS OF CHAOTIC MAP PARAMETERS. Teoriticheskaya fizika. 2007;8:176–183.
- Anikin VM, Arkadakskij SS, Remizov AS, Kupcov SN, Vasilenko LP. Investigation of structure of invariant density for Renyi map by Gauss method. Izvestiya VUZ. Applied Nonlinear Dynamics. 2008;16(6):46–56. DOI: 10.18500/0869-6632-2008-16-6-46-56.
- Anikin VM, Arkadakskii SS, Remizov AS. et all. Lyapunov exponent for chaotic 1D maps with uniform invariant distribution. Bulletin of the Russian Academy of Sciences: Physics. 2008;72(12):1684–1688. DOI: 10.3103/S106287380812023X.
- Anikin VM, Arkadakskii SS, Remizov AS. et all. Classification of one-dimensional chaotic models. Bulletin of the Russian Academy of Sciences: Physics. 2009;73(12):1681–1683. DOI: 10.3103/S1062873809120302.
- Anikin VM. Spectral problems for the Perron–Frobenius operator. Izvestiya VUZ. Applied Nonlinear Dynamics. 2009;17(4):35–48. DOI: 10.18500/0869-6632-2009-17-4-35-48.
- Anikin VM, Arkadakskii SS, Remizov AS. et all. Relaxation properties of chaotic dynamical systems: Operator approach. Bulletin of the Russian Academy of Sciences: Physics. 2009;73(12):1632–1637. DOI: 10.3103/S106287380912020X.
- Goloubentsev AF, Anikin VM. The explicit solutions of Frobenius–Perron equation for the chaotic infinite maps. Int. J. Bifurcation and Chaos. 1998;8(5):1049–1051. DOI: 10.1142/S0218127498000863.
- Golubentsev AF, Anikin VM, Bogomolov AV. Chaotic generators of biological rhythms. Biomedicine radioengineering. 2000;2:38–41.
- Goloubentsev AF, Anikin VM. SPECIAL FUNCTIONS IN THE THEORY OF DETERMINISTIC CHAOS. Izvestiya VUZ. Applied Nonlinear Dynamics. 2000;8(3):50–58.
- Goloubentsev AF, Anikin VM, Arkadaksky SS. Ergodic maps with Lyapunov exponent equal to zero. 2nd International Conference «Control of Oscillation and Chaos», July 5-7, 2000, St. Petersburg, Russia: Proceedings. Ed. Chernousko FL, Fradkov AL. 2000. Vol. 1. 44 p.
- Goloubentsev AF, Anikin VM, Arkadaksky SS. On the convergence of nonstationary solutions of the Frobenius–Perron equations to the invariant density. Ibid. 2000;1:142–143. DOI: 10.1109/COC.2000.873537.
- Goloubentsev AF, Anikin VM, Barulina YA. Difference scheme with instant transition from order to chaos. Int. Conf. «Physics and Control–2003». St. Petersburg, Russia, August 20-22, 2003. St. Petersburg: Proceedings. 2003;2:446–447. DOI: 10.1109/PHYCON.2003.1236864.
- Goloubentsev AF, Anikin VM, Barulina YA. Chaotic maps generating white noise. Ibid. P. 2003;2:452–455. DOI: 10.1109/PHYCON.2003.1236865.
- Goloubentsev AF, Anikin VM, Noyanova SA, Barulina YA. Baker transformation as autoregression system. Ibid. P. 2003;2:654–656. DOI: 10.1109/PHYCON.2003.1236911.
- Goloubentsev AF, Anikin VM, Noyanova SA. MODIFICATIONS OF THE BAKER TRANSFORMATION AND THEIR ASIMPTOTIC PROPERTIES. Izvestiya VUZ. Applied Nonlinear Dynamics. 2004;12(3):45–57.
- Golubentsev AF, Anikin VM. On the chaotic model of the early evolution of the Universe. Journal Radioengineering. 2005;4:50–55.
Received:
15.09.2013
Accepted:
15.09.2013
Published:
31.12.2013
Journal issue:
Short text (in English):
(downloads: 78)
- 2079 reads