For citation:
Kuznetsov A. P., Paksjutov V. I., Emelianova Y. P. Properties of synchronization in the system of nonidentical coupled van der pol and van der Pol – Duffing oscillators. Broadband synchronization. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 4, pp. 3-15. DOI: 10.18500/0869-6632-2007-15-4-3-15
Properties of synchronization in the system of nonidentical coupled van der pol and van der Pol – Duffing oscillators. Broadband synchronization
The particular properties of dynamics are discussed for the dissipatively coupled van der Pol oscillators, nonidentical in values of parameters controlling the Hopf bifurcation. The opportunity of a special synchronization regime in an infinitively long band between oscillation death and quasiperiodicity areas is shown for such system. The features of the bifurcation picture are observed for different values of the control parameters and for the case of additional Duffing type nonlinearity. In discussion a comparison with closed equation analysis is made.
- Pikovsky A, Rosenblum M, Kurts Yu. Synchronization: A fundamental nonlinear phenomenon. Moscow: Tehnosphera; 2003. 493 p.
- Aronson DG, Ermentrout GB, Kopell N. Amplitude response of coupled oscillators. Physica D. 1990;41(3):403–449. DOI: 10.1016/0167-2789(90)90007-C.
- Rand R, Holmes PJ. Bifurcation of periodic motions in two weakly coupled van der Pol oscillators. Int. J. Non-Linear Mechanics. 1980;15:387–399. DOI: 10.1016/0020-7462(80)90024-4.
- Storti DW, Rand RH. Dynamics of two strongly coupled van der Pol oscillators. Int. J. Non-Linear Mechanics. 1982;17(3):143–152. DOI: 10.1016/0020-7462(82)90014-2.
- Chakraborty T, Rand RH. The transition from phase locking to drift in a system of two weakly coupled van der Pol oscillators. Int. J. Non-Linear Mechanics. 1988;23(5-6):369–376. DOI: 10.1016/0020-7462(88)90034-0.
- Poliashenko M, McKay SR, Smith CW. Chaos and nonisochronism in weakly coupled nonlinear oscillators. Phys. Rev. A. 1991;44:3452–3456. DOI: 10.1103/physreva.44.3452.
- Poliashenko M, McKay SR, Smith CW. Hysteresis of synchronous – asynchronous regimes in a system of two coupled oscillators. Phys. Rev. A. 199;43:5638–5641. DOI: 10.1103/physreva.43.5638.
- Pastor I, Perez-Garcia VM, Encinas-Sanz F, Guerra JM. Ordered and chaotic behavior of two coupled van der Pol oscillators. Phys. Rev. E. 1993;48:171–182. DOI: 10.1103/physreve.48.171.
- Camacho E, Rand RH, Howland H. Dynamics of two van der Pol oscillators coupled via a bath. Int. J. of Solids and Structures. 2004;41:2133–2143. DOI: 10.1016/j.ijsolstr.2003.11.035.
- Kuznetsov AP, Paksutov VI. About dynamics of two Van der Pol – Duffing oscillators with dissipative coupling. Izvestiya VUZ. Applied Nonlinear Dynamics. 2003;11(6):48–64 (in Russian).
- Kuznetsov AP, Paksutov VI. Features of the parameter plane of two nonidentical coupled Van der Pol – Duffing oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics. 2005;13(4):3–19 (in Russian). DOI: 10.18500/0869-6632-2005-13-4-3-19.
- Ivanchenko MV, Osipov GV, Shalfeev VD, Kurths J. Synchronization of two non-scalar-coupled limit-cycle oscillators. Physica D. 2004;189(1-2):8–30. DOI: 10.1016/j.physd.2003.09.035.
- Kuznetsov AP, Kuznetsov SP, Ryskin NM. Nonlinear Oscillations. Ser. Modern theory of oscillations and waves. 2nd ed. Moscow: Fizmatlit; 2005. (in Russian).
- Kuznetsov SP. Dynamical chaos. Ser. Modern theory of oscillations and waves. 2nd ed. Moscow: Fizmatlit; 2006. 356 p. (in Russian).
- 1822 reads