ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

Cite this article as:

Sanin A. L., Smirnovskij A. A. Quantum anharmonic oscillator with one-term potential, friction and external force. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 2, pp. 103-115. DOI:


Quantum anharmonic oscillator with one-term potential, friction and external force


In the context of the Schrodinger–Langevin–Kostin equation, the quantum anharmonic oscillator with one-term 4-degree potential has been numerically investigated. The generated frequencies of the oscillator are defined by the non-equidistant energy spectra, the number of  discrete frequencies depends on the initial state energy. Due to increasing of initial state energy,  spectra are displaced in the direction of higher frequencies. Influence of friction on transition from  excited state into ground one is also investigated. Role of friction on the generation of discrete spectral lines is also discussed.


1. Табор М. Хаос и интегрируемость в нелинейной динамике. Пер. с англ. М.: Эдиториал УРСС, 2001. 320 с. 2. Papamikos G., Robnik M. WKB approach applied to 1D time-dependent nonlinear Hamiltonian oscillators // J. Phys. A. Mathematical and Theoretical. 2012. Vol.45, No 1. P. 0152069(1–16). 3. Bartachelli M.V., Berretti A., Deane J.H.B, Gentile G., S.A. Gourley. Selection rules for periodic orbits and scaling laws for a driven damped quartic oscillator // Nonlinear analysis. Elsevier. Real world applications. 2008. Vol. 9. P. 1966. 4. Banerhee K., Bhatnagar S.P., Choudhry V., Kanwal S.S. The anharmonic oscillator // Proc. R. Soc. London. 1978. A. 360. P. 575. 5. Jafarpour M., Afchar D. Calculation of energy eigenvalues for the quantum anharmonic oscillator with a polynomial potential // J. Phys. A: Math. Gen. V. 35. 2002. P. 87. 6. Jafarpour M., Afchar D. Energy levels for the pure ?x Sciences, Islamic Republic of Iran. 2007. Vol. 18, No 1. P. 75. 7. Dittrich T., Grossmann F., Jung P., Oelschlagel B., H  ? anngi P.  ? Localization andtunneling in periodically driven bistable systems // Physica A. 1993. Vol. 194, No 1– 4. P. 173–182. 8. Roy A., Bhattacharjee J.K. Chaos in the quantum double well oscillator: the Ehrenfest view revisited // Phys. Lett. A. Vol. 288, No 1. 2001. P. 1–3. 9. Bagmanov A.T., Sanin A.L., Smirnovsky A.A. Dynamical tunneling in system with non-monotonous potential and impenetrable walls // Proc. of SPIE. Bellingham, WA. 2006. Vol. 6253. P. 625303(1-9). 10. Sanin A.L., Smirnovsky A.A., Bagmanov A.T. Motion, tunneling and quantum revivals of wave packets into systems with distributed potential and boundary walls // Proc. of SPIE. 2007. Vol. 6597. P. 659705. 11. Sanin A.L., Smirnovsky A.A. Oscillatory motion in confined potential systems with dissipation in the context of the Schrodinger–Langevin–Kostin equation // Phys. Lett. A. 2007. Vol. 372, No 1. P. 21. 12. Санин А.Л., Смирновский А.А. Физика. Квантовая динамика. Санкт-Петербург: Изд. Политехн. универ., 2012. 280 с. 13. de Falco D., Tamascelli D. Quantum annealing and the Schrodinger–Langevin–Kostin equation // J. Phys. Rev. A. 2009. Vol. 79. P. 012315. 2m potentials // Journal

Short text (in English):
(downloads: 8)
Full text:
(downloads: 26)