ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Sanin A. L., Smirnovsky A. A. Quantum anharmonic oscillator with one-term potential, friction and external force. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 2, pp. 103-115. DOI: 10.18500/0869-6632-2014-22-2-103-115

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 418)
Language: 
Russian
Article type: 
Article
UDC: 
530.145

Quantum anharmonic oscillator with one-term potential, friction and external force

Autors: 
Sanin Andrej Leonardovich, Peter the Great St. Petersburg Polytechnic University
Smirnovsky Aleksandr Andreevich, Peter the Great St. Petersburg Polytechnic University
Abstract: 

In the context of the Schrodinger–Langevin–Kostin equation, the quantum anharmonic oscillator with one-term 4-degree potential has been numerically investigated. The generated frequencies of the oscillator are defined by the non-equidistant energy spectra, the number of  discrete frequencies depends on the initial state energy. Due to increasing of initial state energy,  spectra are displaced in the direction of higher frequencies. Influence of friction on transition from  excited state into ground one is also investigated. Role of friction on the generation of discrete spectral lines is also discussed.

Reference: 
  1. Tabor М. Chaos and integrability in nonlinear dynamics. New York etc. : Wiley, Cop.; 1989. 364 p.
  2. Papamikos G, Robnik M. WKB approach applied to 1D time-dependent nonlinear Hamiltonian oscillators. J. Phys. A. Mathematical and Theoretical. 2012;45(1):0152069(1–16).
  3. Bartachelli MV, Berretti A, Deane JHB, Gentile G, Gourley SA. Selection rules for periodic orbits and scaling laws for a driven damped quartic oscillator. Nonlinear analysis. Elsevier. Real world applications. 2008;9(5):1966–1988. DOI: 10.1016/j.nonrwa.2007.06.007
  4. Banerhee K, Bhatnagar SP, Choudhry V, Kanwal SS. The anharmonic oscillator. Proc. R. Soc. London. 1978;360:575–586.
  5. Jafarpour M, Afchar D. Calculation of energy eigenvalues for the quantum anharmonic oscillator with a polynomial potential. J. Phys. A: Math. Gen. 2002;35(1):87–92. DOI:10.1088/0305-4470/35/1/307
  6. Jafarpour M, Afchar D. Energy levels for the purex Sciences. Islamic Republic of Iran. 2007;18(1):75–81.
  7. Dittrich T, Grossmann F, Jung P, Oelschlagel B, Hanngi P. Localization andtunneling in periodically driven bistable systems. Physica A. 1993;194(1):173–182. DOI: 10.1016/0378-4371(93)90351-4
  8. Roy A, Bhattacharjee JK. Chaos in the quantum double well oscillator: the Ehrenfest view revisited. Phys. Lett. A. 2001;288(1):1–3. DOI:10.1016/S0375-9601(01)00351-6
  9. Bagmanov AT, Sanin AL, Smirnovsky AA. Dynamical tunneling in system with non-monotonous potential and impenetrable walls. Proc. of SPIE. Bellingham, WA. 2006;6253:625303(1-9). DOI:10.1117/12.676299
  10. Sanin AL, Smirnovsky AA, Bagmanov AT. Motion, tunneling and quantum revivals of wave packets into systems with distributed potential and boundary walls. Proc. of SPIE. 2007;6597:659705. DOI:10.1117/12.726708
  11. Sanin AL, Smirnovsky AA. Oscillatory motion in confined potential systems with dissipation in the context of the Schrodinger–Langevin–Kostin equation. Phys. Lett. A. 2007;372(1):21–27. DOI:10.1016/j.physleta.2007.07.019
  12. Sanin AL, Smirnovsky AA. Physics. Quantum dynamics. St. Petersburg: Polytech-Press; 2012. 280 p. (In Russian).
  13. de Falco D, Tamascelli D. Quantum annealing and the Schrodinger–Langevin– Kostin equation. J. Phys. Rev. A. 2009;79(1):012315(1-5).
Received: 
26.03.2014
Accepted: 
24.04.2014
Published: 
31.07.2014
Short text (in English):
(downloads: 107)