ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Pavlov A. S. Relationship of generalized and phase synchronization in two unidirectionally coupled chaotic oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 1, pp. 91-98. DOI: 10.18500/0869-6632-2012-20-1-91-98

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 95)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Relationship of generalized and phase synchronization in two unidirectionally coupled chaotic oscillators

Autors: 
Pavlov Aleksandr Sergeevich, Saratov State University
Abstract: 

The behavior of the boundary of generalized synchronization in two unidirectionally coupled chaotic oscillators depending on the value of the control parameter mismatch between interacting systems has been studied. Peculiarities in its behavior in the field of the relatively large values of the control parameter mistuning have been found. The character of this behavior and physical mechanisms resulting in the generalized synchronization regime onset in such systems have been explained by the analysis of the spectral compound of signal from response system.

Reference: 
  1. Boccaletti S, Kurths J, Osipov GV, Valladares DL, Zhou CS. The synchronization of chaotic systems. Physics Reports. 2002;366:1–101. DOI: 10.1016/S0370-1573(02)00137-0.
  2. Koronovskii AA, Moskalenko OI, Hramov AE. On the use of chaotic synchronization for secure communication. Phys. Usp. 2009;52(12):1213–1238.
  3. Glass L. Synchronization and rhythmic processes in physiology. Nature. 2001;410(6825):277–284. DOI: 10.1038/35065745.
  4. Trubetskov DI, Koronovsky AA, Khramov AE. Synchronization of Distributed Electron-Wave Self-Oscillatory Systems with a Backward Wave. Radiophysics and Quantum Electronics. 2004;47(5-6):305–331. DOI: 10.1023/B:RAQE.0000046307.62799.f2.
  5. Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HDI. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E. 1995;51(2):980–994. DOI: 10.1103/physreve.51.980.
  6. Pikovsky AS, Rosenblum MG, Kurths J. Phase synchronization in regular and chaotic systems. Int. J. Bifurcation and Chaos. 2000;10(10):2291–2305. DOI: 10.1142/S0218127400001481.
  7. Parlitz U, Junge L, Lauterborn W, Kocarev L. Experimental observation of phase synchronization. Phys. Rev. E. 1996;54(2):2115–2117. DOI: 10.1103/physreve.54.2115.
  8. Pyragas K. Weak and strong synchronization of chaos. Phys. Rev. E. 1997;56(5):5183–5188.
  9. Abarbanel HDI, Rulkov NF, Sushchik M. Generalized synchronization of chaos: The auxiliary system approach. Phys. Rev. E. 1996;53(5):4528–4535. DOI: 10.1103/physreve.53.4528.
  10. Zheng Z, Hu G. Generalized synchronization versus phase synchronization. Phys. Rev. E. 2000;62(6):7882–7885. DOI: 10.1103/physreve.62.7882.
  11. Hramov AE, Koronovskii AA, Moskalenko OI. Generalized synchronization onset. Europhysics Letters. 2005;72(6):901–907. DOI: 10.1209/epl/i2005-10343-4.
  12. Koronovskii AA, Moskalenko OI, Hramov AE. Generalized synchronization of chaotic oscillators. Tech. Phys. Lett. 2006;32:113–116. DOI: 10.1134/S1063785006020076.
  13. Koronovskii AA, Kurovskaya MK, Moskalenko OI, Hramov AE. Two scenarios of breaking chaotic phase synchronization. Technical Physics. 2007;52(1):19–26. DOI: 10.1134/S1063784207010045.
  14. Hramov AE, Koronovskii AA, Kurovskaуa MK. Two types of phase synchronization destruction. Phys. Rev. E. 2007;75:036205. DOI: 10.1103/PhysRevE.75.036205.
  15. Koronovskii AA, Moskalenko OI, Hramov AE. The threshold of generalized synchronization of chaotic oscillators. Journal of Communications Technology and Electronics. 2007;52(8):881–890. DOI: 10.1134/S1064226907080086.
  16. Moskalenko OI. Synchronization of spectral components in unidirectionally coupled systems. Technical Physics. 2010;55(8):1075–1081. DOI: 10.1134/S1063784210080013.
Received: 
29.12.2012
Accepted: 
29.12.2012
Published: 
20.04.2012
Short text (in English):
(downloads: 48)