ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Zhuravlev M. O., Koronovskii A. A., Moskalenko O. I., Hramov A. E. Ring intermittency near the boundary of time scale synchronization. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 4, pp. 12-24. DOI: 10.18500/0869-6632-2011-19-4-12-24

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 72)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Ring intermittency near the boundary of time scale synchronization

Autors: 
Zhuravlev Maksim Olegovich, Saratov State University
Koronovskii Aleksei Aleksandrovich, Saratov State University
Moskalenko Olga Igorevna, Saratov State University
Hramov Aleksandr Evgenevich, Innopolis University
Abstract: 

In this paper the intermittent behavior taking place near the boundary of the synchronous time scales of interacted chaotic oscillators being in the synchronous regime is studied. At the regime of time-scale synchronization the system demonstrates synchronous dynamics in a certain range of the time scales whereas the processes on the other time scales remain asynchronous. On the basis of analysis of statistical characteristics of the intermittent behavior, i.e. the laminar phase length distributions and dependence of the mean length of the laminar phases on the criticality parameter, the revealed type of the intermittent behavior is shown to be the ring intermittency.

Reference: 
  1. Берже П., Помо И., Видаль К. Порядок в хаосе. М.: Мир, 1991.
  2. Manneville P., Pomeau Y. Different ways to turbulence in dissipative dynamical systems // Physica D. 1980. Vol. 1, No 2. P. 167.
  3. Berge P., Pomeau Y., Vidal C. L’Ordre Dans Le Chaos. Hermann, Paris, 1988.
  4. Dubois M., Rubio M., Berge P.  Experimental evidence of intermittencies associated with a subharmonic bifurcation // Phys. Rev. Lett. 1983. Vol. 51. P. 1446.
  5. Platt N., Spiegel E.A., Tresser C. On–off intermittency: A mechanism for bursting // Phys. Rev. Lett. 1993. Vol. 70, No 3. P. 279.
  6. Heagy J.F., Platt N., Hammel S.M. Characterization of on–off intermittency // Phys. Rev. E. 1994. Vol. 49, No 2. P. 1140.
  7. Lai Y.-C. Symmetry-breaking bifurcation with on-off intermittency in chaotic dynamical systems // Phys. Rev. E. 1996. Vol. 53, No 5. R4267.
  8. Pikovsky A.S., Osipov G.V., Rosenblum M.G. et al. Attractor–repeller collision and eyelet intermittency at the transition to phase synchronization // Phys. Rev. Lett. 1997. Vol. 79, No 1. P. 47.
  9. Hramov A.E., Koronovskii A.A., Kurovskaya M.K., Boccaletti S. Ring intermittency in coupled chaotic oscillators at the boundary of phase synchronization // Phys. Rev. Lett. 2006. Vol. 97. P. 114101.
  10. Rosenblum M. G., Pikovsky A. S., Kurths J. From phase to lag synchronization in coupled chaotic oscillators // Phys. Rev. Lett. 1997. Vol. 78, No 22. Pp. 4193.
  11. Porcher R., Thomas G. Estimating Lyapunov exponents in biomedical time series // Phys. Rev. E. 2001. Vol. 64, No 1. P. 010902(R).
  12. Hramov A.E., Koronovskii A.A. Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators // Europhysics Lett. 2005. Vol. 70, No 2. P. 169.
  13. Boccaletti S., Valladares D.L. Characterization of intermittent lag synchronization // Phys. Rev. E. 2000. Vol. 62, No 5. P. 7497.
  14. Rosenblum M.G., Pikovsky A.S., Kurths J. Phase synchronization of chaotic oscillators // Phys. Rev. Lett. 1996. Vol. 76, No 11. P. 1804.
  15. Rulkov N.F., Sushchik M.M., Tsimring L.S., Abarbanel H.D. Generalized synchronization of chaos in directionally coupled chaotic systems // Phys. Rev. E. 1995. Vol. 51, No 2. P. 980.
  16. Hramov A.E., Koronovskii A.A. Generalized synchronization: a modified system approach // Phys. Rev. E. 2005. Vol. 71, No 6. P. 067201.
  17. Pecora L.M., Carroll T.L. Synchronization in chaotic systems // Phys. Rev. Lett. 1990. Vol. 64, No 8. P. 821.
  18. Hramov A.E., Koronovskii A.A. An approach to chaotic synchronization // Chaos. 2004. Vol. 14, No 3. P. 603.
  19. Hramov A.E., Koronovskii A.A. Time scale synchronization of chaotic oscillators // Physica D. 2005. Vol. 206, No 3–4. P. 252–264.
  20. Rosenblum M.G., Pikovsky A.S., Kurths J. Locking–based frequency measurement and synchronization of chaotic oscillators with complex dynamics // Phys. Rev. Lett. 2002. Vol. 89, No 26. P. 264102.
  21. Короновский А.А., Москаленко О.И., Храмов А.Е. Новый тип универсальности при хаотической синхронизации динамических систем // Письма в ЖЭТФ. 2004. T. 80, No 1. С. 25.
  22. Hramov A.E., Koronovskii A.A., Kurovskaya M.K. et al. Length distribution of laminar phases for type-I intermittency in the presence of noise // Phys. Rev. E. 2007. Vol. 76, No 2. P. 026206.
  23. Hramov A.E., Koronovskii A.A., Kurovskaya M.K. Two types of phase synchronization destruction // Phys. Rev. E. 2007. Vol. 75, No 3. P. 036205.
  24. Журавлев М. О., Куровская М.К., Москаленко О.И. Метод выделения ламинарных и турбулентных фаз в перемежающихся временных реализациях систем, находящихся вблизи границы фазовой синхронизации // Письма в ЖТФ. 2010. T. 36, No 10. С 31.  
Received: 
12.11.2010
Accepted: 
23.06.2011
Published: 
30.09.2011
Short text (in English):
(downloads: 44)