ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Shulgin B. V., Chapman S., Nakariakov V. M. Self-consistent particle dynamics in the geotail magnetic field reversal. Izvestiya VUZ. Applied Nonlinear Dynamics, 2003, vol. 11, iss. 3, pp. 148-156. DOI: 10.18500/0869-6632-2003-11-3-148-156

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Article type: 

Self-consistent particle dynamics in the geotail magnetic field reversal

Shulgin Boris V., University of Warwick
Chapman Sandra, University of Warwick
Nakariakov Valery M., University of Warwick

Dynamics оf ions in the geotail magnetic field reversal plasmas is modelled with а hybrid code. Poincare maps are calculated for stationary and for adiabatically changing field configurations starting from an anisotropic pressure self-consistent equilibrium. It is shown that the essential dynamics as found previously for single particle in prescribed fields persists in the hybrid code simulations of self-consistent fields. The possible interplay of dynamical processes in the Earth’s magnetosphere and in the solar wind is discussed.

Key words: 
This research was supported by PPARC. B.S. thanks A.P.Nikitin аnd A.G. Balanov for useful discussions. The authors cordial greet Prof. Vadim Semenovich Anishchenko on the jubilee with the best wishes.
  1. Hill T. The Rice University Electromagnetic Field Model. Rice University.
  2. Klimontovich YL. Statistical Theory of Open Systems. Vol. 1. Dordrecht: Kluwer Academic Publisher; 1991. 569 p.; Vol. 2. Moscow: Janus-K; 1999. 438 p. (in Russian).
  3. Baumjohann W, Treumann R. Basics Space Plasma Physics. Imperial College Press; 1996. 340 p. DOI: 10.1142/p015.
  4. Terasawa Т, Hoshino M. Decay instability of finite-amplitude circularly polarized Alfven waves: A numerical simulation of stimulated Brillouin scattering. JGR. 1986;91(A4):4171–4187. DOI: 10.1029/JA091iA04p04171.
  5. Richardson А, Chapman SC. Adv. Space Res. 1993;13(4):253.
  6. Richardson А, Chapman SC. Self consistent one-dimensional hybrid code simulations of a relaxing field reversal. JGR. 1994;99(A9):17391–17404. DOI: 10.1029/93JA02929.
  7. Holland DL, Chen J. GRL. 1993;20:1775.
  8. Bittencourt J. Fundamentals of Plasma Physics. Pergamon Press; 1986. 711 p.
  9. Lichtenberg AJ, Lieberman MA. Regular and Stochastic Motion. New York: Springer-Verlag; 1983. 499 p. DOI: 10.1007/978-1-4757-4257-2.
  10. Anishchenko VS, Astakhov VV, Neiman AB, Vadivasova TE, Schimansky-Geier L. Nonlinear Dynamics of Chaotic and Stochastic Systems. Berlin, Heidelberg: Springer; 2002. 446 p.
  11. Chen J. Nonlinear dynamics of charged particles in the magnetotail. JGR. 1992;97(A10):15011–15050. DOI: 10.1029/92JA00955.
  12. Ynnerman А, Chapman SC, Tsalas M, Rowlands С. Identification of symmetry breaking and a bifurcation sequence to chaos in single particle dynamics in magnetic reversals. Physica D. 2000;139(3–4):217–230. DOI: 10.1016/S0167-2789(99)00144-X.
  13. Chapman SC. Chaotic single particle dynamics in a multi-timescale parameterizable field reversal. Ann. Geophysicae. 1993;11(4):239–247.
  14. Chapman SС, Watkins NW. Parameterization of chaotic particle dynamics in a simple time-dependent field reversal. JGR. 1993;98(A1):165–177. DOI: 10.1029/92JA01548.
  15. Lockwood M, Stamper R, Wild MN. A doubling of the Sun's coronal magnetic field during the past 100 years. Nature. 1999;399(6735):437–439. DOI: 10.1038/20867.
  16. Gammaitoni L, Hénggi Р, Jung Р, Marchesoni F. Stochastic resonance. Rev. Mod. Phys. 1998;70(1):223–287. DOI: 10.1103/RevModPhys.70.223.
  17. Anishchenko VS, Neiman AB, Moss F, Schimansky-Geier L.R. Stochastic resonance: noise-enhanced order. Physics–Uspekhi. 1999;42(1):7–36. DOI: 10.1070/PU1999v042n01ABEH000444.
Available online: