For citation:
Shulgin B. V., Chapman S., Nakariakov V. M. Self-consistent particle dynamics in the geotail magnetic field reversal. Izvestiya VUZ. Applied Nonlinear Dynamics, 2003, vol. 11, iss. 3, pp. 148-156. DOI: 10.18500/0869-6632-2003-11-3-148-156
Self-consistent particle dynamics in the geotail magnetic field reversal
Dynamics оf ions in the geotail magnetic field reversal plasmas is modelled with а hybrid code. Poincare maps are calculated for stationary and for adiabatically changing field configurations starting from an anisotropic pressure self-consistent equilibrium. It is shown that the essential dynamics as found previously for single particle in prescribed fields persists in the hybrid code simulations of self-consistent fields. The possible interplay of dynamical processes in the Earth’s magnetosphere and in the solar wind is discussed.
- Hill T. The Rice University Electromagnetic Field Model. Rice University.
- Klimontovich YL. Statistical Theory of Open Systems. Vol. 1. Dordrecht: Kluwer Academic Publisher; 1991. 569 p.; Vol. 2. Moscow: Janus-K; 1999. 438 p. (in Russian).
- Baumjohann W, Treumann R. Basics Space Plasma Physics. Imperial College Press; 1996. 340 p. DOI: 10.1142/p015.
- Terasawa Т, Hoshino M. Decay instability of finite-amplitude circularly polarized Alfven waves: A numerical simulation of stimulated Brillouin scattering. JGR. 1986;91(A4):4171–4187. DOI: 10.1029/JA091iA04p04171.
- Richardson А, Chapman SC. Adv. Space Res. 1993;13(4):253.
- Richardson А, Chapman SC. Self consistent one-dimensional hybrid code simulations of a relaxing field reversal. JGR. 1994;99(A9):17391–17404. DOI: 10.1029/93JA02929.
- Holland DL, Chen J. GRL. 1993;20:1775.
- Bittencourt J. Fundamentals of Plasma Physics. Pergamon Press; 1986. 711 p.
- Lichtenberg AJ, Lieberman MA. Regular and Stochastic Motion. New York: Springer-Verlag; 1983. 499 p. DOI: 10.1007/978-1-4757-4257-2.
- Anishchenko VS, Astakhov VV, Neiman AB, Vadivasova TE, Schimansky-Geier L. Nonlinear Dynamics of Chaotic and Stochastic Systems. Berlin, Heidelberg: Springer; 2002. 446 p.
- Chen J. Nonlinear dynamics of charged particles in the magnetotail. JGR. 1992;97(A10):15011–15050. DOI: 10.1029/92JA00955.
- Ynnerman А, Chapman SC, Tsalas M, Rowlands С. Identification of symmetry breaking and a bifurcation sequence to chaos in single particle dynamics in magnetic reversals. Physica D. 2000;139(3–4):217–230. DOI: 10.1016/S0167-2789(99)00144-X.
- Chapman SC. Chaotic single particle dynamics in a multi-timescale parameterizable field reversal. Ann. Geophysicae. 1993;11(4):239–247.
- Chapman SС, Watkins NW. Parameterization of chaotic particle dynamics in a simple time-dependent field reversal. JGR. 1993;98(A1):165–177. DOI: 10.1029/92JA01548.
- Lockwood M, Stamper R, Wild MN. A doubling of the Sun's coronal magnetic field during the past 100 years. Nature. 1999;399(6735):437–439. DOI: 10.1038/20867.
- Gammaitoni L, Hénggi Р, Jung Р, Marchesoni F. Stochastic resonance. Rev. Mod. Phys. 1998;70(1):223–287. DOI: 10.1103/RevModPhys.70.223.
- Anishchenko VS, Neiman AB, Moss F, Schimansky-Geier L.R. Stochastic resonance: noise-enhanced order. Physics–Uspekhi. 1999;42(1):7–36. DOI: 10.1070/PU1999v042n01ABEH000444.
- 452 reads