ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Davidovich M. V. Signal to noise output ratio improvement in nonlinear amplifier under the stochastic resonance. Izvestiya VUZ. Applied Nonlinear Dynamics, 1998, vol. 6, iss. 5, pp. 43-55. DOI: 10.18500/0869-6632-1998-6-5-43-55

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
621.372

Signal to noise output ratio improvement in nonlinear amplifier under the stochastic resonance

Autors: 
Davidovich Mihail Vladimirovich, Saratov State University
Abstract: 

The numerical simulations of nonlinear four—ports under the stochastic resonance are resulted and presented. The wide—band amplification of modulated signals with the noise coefficient in the range 1.5 — 2.0 dB has been shown. The possibility of noise coefficient decreasing in the circuit with several branches having non-identical four—ports has been investigated. The block—scheme for extraction the sinusoidal signal from white noise has been introduced and investigated. The signal has the form of separated sinusoidal series with carrying frequency ω0. The peculiarities of the scheme are the subharmonic signal ω0/3 producing which is proportional to the input signal and also the nonlinear signal transformation.

Key words: 
Acknowledgments: 
The author is grateful to Prof. V.S. Anishchenko for raising the problem investigated in this paper.
Reference: 
  1. Benzi R, Sutera А, Vulpiani А. The mechanism of stochastic resonance. J. Phys. A: Math. Gen. 1981;14(11):L453-L457. DOI: 10.1088/0305-4470/14/11/006.
  2. Nicolis C, Nicolis G. Stochastic aspects оf climatic transitions — Additive fluctuations. Tellus. 1981;33(3):225-234. DOI: 10.1111/j.2153-3490.1981.tb01746.x.
  3. Nicolis C. Stochastic aspects of climatic transitions — responce to a periodic forcing. Tellus. 1982;34(1):1-9. DOI: 10.3402/tellusa.v34i1.10781.
  4. Fauve S, Heslot F. Stochastic resonance in а bistable system. Phys. Lett. А. 1983;97(1-2):5-7. DOI: 10.1016/0375-9601(83)90086-5.
  5. McNamara B, Wiesenfeld K. Theory of stochastic resonance. Phys. Rev. A Gen. Phys. 1989;39(9):4854-4869. DOI: 10.1103/physreva.39.4854.
  6. Presila C, Marchesoni F, Gammaitoni L. Theory of stochastic resonance. Phys. Rev. A Gen. Phys.  1989;40(4):2105-2113.
  7. Gammaitoni L, Menichella—Saetta E, Santucci S, Marchesoni Е. Extraction of periodic signals from a noise background. Phys. Lett. A. 1989;142(2-3):59-62. DOI: 10.1016/0375-9601(89)90159-X.
  8. Jung Р, Hanggi P. Resonantly driven Brownian motion: Basic concepts and exact results. Phys. Rev. А. 1990;41(6):2977-2988. DOI: 10.1103/physreva.41.2977.
  9. Zhou T, Moss F. Analog simulations of stochastic resonance. Phys. Rev. А. 1990;41(8):4255-4264. DOI: 10.1103/physreva.41.4255.
  10. Jung Р, Hangii P. Amplification оf small signals via stochastic resonance. Phys. Rev. А. 1991;144(12):8032-8042. DOI: 10.1103/physreva.44.8032.
  11. Anischenko VS, Safonova MA, Chua LO. Stochastic resonance in Chua’s circuits. Int. J. Bifurc. Chaos. 1992;2(2):397-401. DOI: 10.1142/S0218127492000379.
  12. Nicolis G, Nicolis C, McKernan D. Stochastic resonance in chaotic dynamics. J. Stat. Phys. 1993;70(1-2):125-139. DOI: 10.1007/BF01053958.
  13. Anishchenko VS, Safonova MA, Chua LО. Stochastic resonance in non-autonomous Chua’s circuits. J. Circuits Syst. Comp. 1993;3(2):553-578. DOI: 10.1142/S0218126693000344.
  14. Anischenko VS, Neiman AB, Safonova MA. Stochastic resonance in chaotic systems. J. Stat. Phys. 1993;70(1-2):183-196. DOI: 10.1007/BF01053962.
  15. J. Stat. Phys. Special issue. 1993;70(1/2).
  16. Anishchenko VS, Neiman AV, Safonova MA, Hovanov IА. Stochastic resonance under multifrequency exposure. J. Comm. Tech. Electron. 1994;39(8/9):1380-1392.
  17. Jung P. Periodically driven stochastic systems. Phys. Rep. 1994;234(4-5):175-295. DOI: 10.1016/0370-1573(93)90022-6.
  18. Madan RN, editor. Chua’s Circuit: A Paradigm for Chaos. Singapore: Wold Scientific; 1993. 1088 p. DOI: 10.1142/1997.
  19. Dukman MI, Luchinsky DG, Mannella R, McCclintock PVE. Stein ND, Stocks NG. Stochastic Resonance and its Provenance. Изв. вузов. ПНД. 1995;3(3):56.
  20. Anishchenko VS, Khovanov IA, Shulgin DE. Stochastic resonance in the Chua’s circuit during the interaction of different types of system attractors. Izvestiya VUZ. Applied Nonlinear Dynamics. 1995;3(3):91-99.
  21. Postnov DE. Stochastic resonance in autogenerators with rigid excitation. Izvestiya VUZ. Applied Nonlinear Dinamics. 1995;3(3):100-111.
  22. Anishchenko VS, Postnov DE, Khovanov IA, Shulgin BV. Use of stochastic resonance to increase the signal-to-noise ratio in radio systems. J. Comm. Tech. Electron. 1994;39(12):2004-2014. (in Russian).
  23. Davidovich MV. Bistable amplifier on the stochastic resonance effect for small signal-to-noise input ratios. J. Comm. Tech. Electron. 1996;41(11):1332-1339. (in Russian).
  24. Davidovich MV, Popova NF. Noisy signal amplification by nonlinear four— ports under stochastic resonance on microwaves. In: Proc. оf IEEE-Russia Conference 1997 «High Power Microwave Electronics: Measurements, Identification, Applications». 23-25 September 1997, Novosibirsk, Russia. P. 1-5.
  25. Davidovich M.V. Signal-to-noise ratio improvement in the е nonlinear amplifiers with bistable four—ports оn microwaves. In: Proc. оf 5-th Int. Workshop оn Integrated Nonlinear Microwave and Millimeterwave Circuits. 2nd October 1998, Gerhard—Mercator—University Duisburg. P. 204-208.
  26. Malskii IV, Sestroretskii BV, editors. Microwave Devices on Semiconductor Diodes. Design and Calculation. М.: Sovetskoe radio; 1969. 580 p.
  27. Nikitin NN, Razevig VD. Digital simulation of stochastic differential equations and error estimates. USSR Comp. Math. Math. Phys. 1978;18(1):102-113. DOI: 10.1016/0041-5553(78)90011-3.
  28. Horsthemke W, Lefever R. Noise-Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology. Berlin: Springer; 1984. 322 p. DOI: 10.1007/3-540-36852-3.
  29. Moon FC. Chaotic Vibrations: An Introduction for Applied Scientists and Engineers. New York: Wiley;1987. 309 p.
  30. Elsgolts LE. Differential Equations and the Calculus of Variations. М.: Mir; 1970. 440 p.
  31. Stratonovich RL. Selected Problems in the Theory of Radio-Engineering Fluctuations. М.: Sovetskoe radio; 1961. 558 p. (in Russian).
Received: 
17.12.1997
Accepted: 
09.12.1998
Published: 
25.02.1999