For citation:
Golubencev A. F., Anikin V. M. Special functions in the theory of deterministic chaos. Izvestiya VUZ. Applied Nonlinear Dynamics, 2000, vol. 8, iss. 3, pp. 50-58. DOI: 10.18500/0869-6632-2000-8-3-50-58
Special functions in the theory of deterministic chaos
It is illustrated the Chebyshev polynomials are the exact-endomorphisms that are conjugated to the piecewise linear chaotic transformations. Explicit nonstationary solutions of the Perron — Frobenius equations for the chaotic Chebyshev maps are found. Their convergence to invariant densities is analyzed. The results allow one to treat the Lyapunov exponent as the rate of such convergence. Some chaotic maps that are monotonically related to the tent map by Jacobian elliptic functions and Gaussian lemniscate ones and characterized by invariant distributions in the form of elliptic integrals are constructed.
- Ulam SM. A Collection of Mathematical Problems. N.Y.: Interscience Publishers;1960. 150p.
- Kornfeld IP, Sinai YaG, Fomin SV. Ergodic theory. M.: Nauka; 1980. 193 p. (in Russian).
- Jacobson MV. Ergodic theory of one-dimensional mappings. In: Gamkrelidze RV, editor. Dynamic systems. Vol. 2. Results of science and technology. Modern problems of mathematics. Fundamental directions. M.: VINITI; 1985. P. 204-232. (in Russian).
- Lasota А, Mackey МС. Probabilistic Properties оf Deterministic Systems. Cambridge: Cambridge University Press; 1985. 358 p. DOI: 10.1017/CBO9780511897474.
- Sharkovsky AN, Maistrenko YuL, Romanenko EYu. Difference equations and their applications. Kiev: Naukova dumka; 1986. 280 p.
- Oseledets VI. Multiplicative ergodic theorem. Lyapunovsky characteristic indicator for dynamical systems. Transactions of the Moscow Mathematical Society. 1968;19:197-231.
- Goloubentsev AF, Anikin VM. The explicit solutions of Frobenius — Perron equation for the chaotic infinite maps. Int. J. оf Bifurc. and Chaos. 1998;8(5):1049-1051. DOI: 10.1142/S0218127498000863.
- Shapiro AP, Luppov SP. Recurrent Equations in Population Biology Theory. М.: Nauka; 1983. 136 p.
- Katsura Sh, Fukuda W. Exactly solvable models showing chaotic behavior. Physica A. 1985;130(3):597-605. DOI: 10.1016/0378-4371(85)90048-2.
- Golubentsev AF, Anikin VM. Invariant measures for chaotic difference equations with exact solutions. In: Questions of applied physics: Interuniversity scientific collection. no. 4. Saratov: Saratov University Publishing; 1998. Bem 4. С. 29-31.
- Ulam SM, von Neumann J. On combination of stochastic аnd deterministic processes. Bulletin of the American Mathematical Society. 1947;53(11):1120.
- Adler RL, Rivlin TJ. Ergodic and mixing properties of Chebyshev polynomials. Proceedings of the American Mathematical Society. 1964;15(5):794-794. DOI: 10.1090/S0002-9939-1964-0202968-3.
- Pugachev VS. Probability theory and mathematical statistics. M.: Nauka; 1979. 496 p. (in Russian).
- Schuster G. Deterministic Chaos: An Introduction. Weinheim: Wiley; 1998. 270 p.
- Korn GA, Korn TM. Mathematical Handbook for Scientists and Engineers. N.Y.: McGraw-Hill Book Company; 1968. 1152 p.
- Gradstein IS, Ryzhik IM. Tables of integrals, sums, series and products. М.: Fismattgiz; 1963. 1100 p.
- Falk H. Evolution оf the density for а chaotic mар. Phys. Lett. A. 1984;105(3):101-102.
- Ahiezer NI. Elements of the theory of elliptical functions. M.: Nauka; 1970. 304 p.
- Tsuchiya Т. An exactly solvable difference equation that give pure chaos for а continuous range оf а parameter. Zeitschrift fur Naturforschung A. 1984;39(1):80-82. DOI: 10.1515/zna-1984-0113.
- Goloubentsev AF, Anikin VM. Gauss lemniscate functions as exact solutions for chaotic maps. In: Nonlinear Dynamics and Chaos. Application in Physics, Biology and Medicine. Saratov: College; 1996. P. 75.
- 288 reads