ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Jalnine A. Y. Statistical properties of the intermittent transition to chaos in the quasi-periodically forced system. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 5, pp. 30-43. DOI: 10.18500/0869-6632-2006-14-5-30-43

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 184)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
517.9

Statistical properties of the intermittent transition to chaos in the quasi-periodically forced system

Autors: 
Jalnine Aleksej Yurevich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

By the example of the quasi-periodically forced logistic map we investigate statistical properties of the transition from strange nonchaotic attractor to chaos in the system with intermittent dynamics. The probability characteristics of laminar and chaotic phase distributions, as well as scaling laws for distributions of local Lyapunov exponents are studied at parameter values near the transition point. The transition is shown to possess a statistical character and to be associated with the decrease of the average length of laminar phases at nearly constant value of the average length of chaotic bursts. The probability of chaotic phase demonstrate approximately linear increase under variation of the parameter of transition. The distributions of local Lyapunov exponents satisfy common scaling laws for strange nonchaotic and chaotic attractors of intermittent type before and after transition, respectively.

Key words: 
Reference: 
  1. Grebogi C, Ott E, Pelikan S, Yorke JA. Strange attractors that are not chaotic. Physica D. 1984;13(1-2):261–268. DOI: 10.1016/0167-2789(84)90282-3.
  2. Ding M, Grebogi C, Ott E. Dimensions of strange nonchaotic attractors. Phys. Lett. A. 1989;137(4-5):167–172.
  3. Hunt BR, Ott E. Fractal properties of robust strange nonchaotic attractors. Phys Rev Lett. 2001;87(25):254101. DOI: 10.1103/PhysRevLett.87.254101.
  4. Stark J. Invariant graphs for forced systems. Physica D. 1997;109(1-2):163–179. DOI: 10.1016/S0167-2789(97)00167-X.
  5. Feudel U, Pikovsky A, Politi A. Renormalization of correlations and spectra of a strange non-chaotic attractor. J. Phys. A: Math. Gen. 1996;29(17):5297–5311. DOI: 10.1088/0305-4470/29/17/008.
  6. Bezhaeva ZI, Oseledets VI. An Example of a Strange Nonchaotic Attractor. Funct. Anal. Appl. 1996;30(4):223–229. DOI: 10.4213/faa545.
  7. Pikovsky AS, Feudel U. Characterizing strange nonchaotic attractors. Chaos. 1995;5(1):253–260. DOI: 10.1063/1.166074.
  8. Ditto WL, Spano ML, Savage HT, Rauseo SN, Heagy J, Ott E. Experimental observation of a strange nonchaotic attractor. Phys Rev Lett. 1990;65(5):533–536. DOI: 10.1103/PhysRevLett.65.533.
  9. Ding WX, Deutsch H, Dinklage A, Wilke C. Observation of a strange nonchaotic attractor in a neon glow discharge. Phys. Rev. E. 1997;55(3):3769–3772.
  10. Bezruchko BP, Kuznetsov SP, Seleznev YP. Experimental observation of dynamics near the torus-doubling terminal critical point. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000;62(6):7828–7830. DOI: 10.1103/physreve.62.7828.
  11. Ramaswamy R. Synchronization of strange nonchaotic attractors. Phys. Rev. E. 1997;56(6):7294–7296. DOI: 10.1103/PHYSREVE.56.7294.
  12. Zhou C-S, Chen T-L. Robust communication via synchronization between nonchaotic strange attractors. Europhys. Lett. 1997;38(4):261. DOI: 10.1209/epl/i1997-00235-7.
  13. Heagy JF, Hammel SM. The birth of strange nonchaotic attractors. Physica D. 1994;70(1-2):140–153.
  14. Glendinning P. The non-smooth pitchfork bifurcation. Discrete and Continuous Dynamical Systems – Series B. 2002;6(4):1–7.
  15. Yalçinkaya T, Lai YC. Blowout Bifurcation Route to Strange Nonchaotic Attractors. Phys Rev Lett. 1996;77(25):5039–5042. DOI: 10.1103/PhysRevLett.77.5039.
  16. Nishikawa T, Kaneko K. Fractalization of a torus as a strange nonchaotic attractor. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996;54(6):6114–6124. DOI: 10.1103/physreve.54.6114.
  17. Kuznetsov SP. Torus fractalization and intermittency. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;65(6):066209. DOI: 10.1103/PhysRevE.65.066209.
  18. Prasad A, Mehra V, Ramaswamy R. Intermittency route to strange nonchaotic attractors. Phys. Rev. Lett. 1997;79(21):4127. DOI: 10.1103/PhysRevLett.79.4127.
  19. Prasad A, Mehra V, Ramaswamy R. Strange nonchaotic attractors in the quasiperiodically forced logistic map. Phys. Rev. E. 1998;57(2):1576. DOI: 10.1103/PhysRevE.57.1576.
  20. Venkatesan A, Lakshmanan M, Prasad A, Ramaswamy R. Intermittency transitions to strange nonchaotic attractors in a quasiperiodically driven duffing oscillator. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000;61(4):3641–3651. DOI: 10.1103/physreve.61.3641.
  21. Kim SY, Lim W, Ott E. Mechanism for the intermittent route to strange nonchaotic attractors. Phys Rev E Stat Nonlin Soft Matter Phys. 2003;67(5):056203. DOI: 10.1103/PhysRevE.67.056203.
  22. Lai YC. Transition from strange nonchaotic to strange chaotic attractors. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996;53(1):57–65. DOI: 10.1103/physreve.53.57.
  23. Lai YC, Feudel U, Grebogi C. Scaling behavior of transition to chaos in quasiperiodically driven dynamical systems. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996;54(6):6070–6073. DOI: 10.1103/physreve.54.6070.
  24. Pomeau Y, Manneville P. Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 1980;74(2):189–197. DOI: 10.1007/BF01197757.
  25. Afraimovich VS, Shilnikov LP. Strange attractors and quasiattractors. Nonlinear Dynamics and Turbulence. Ed. by G.I. Barenblatt, G. Iooss, D.D. Joseph. Pitman, Boston, London, Melbourne; 1983. P. 1.
Received: 
28.12.2005
Accepted: 
14.04.2006
Published: 
30.11.2006
Short text (in English):
(downloads: 85)