ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Postnov D. E., Shishkin A. V., Setsinsky D. V. Stochastic dynamics оf excitable system near the canard explosion. Izvestiya VUZ. Applied Nonlinear Dynamics, 2003, vol. 11, iss. 6, pp. 104-115. DOI: 10.18500/0869-6632-2003-11-6-104-115

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
Russian
Article type: 
Article
UDC: 
532.517; 517.9; 621.373

Stochastic dynamics оf excitable system near the canard explosion

Autors: 
Postnov Dmitry E, Saratov State University
Shishkin Aleksandr Vladislavovich, Saratov State University
Setsinsky Dmitry Vyacheslavovich, Saratov State University
Abstract: 

The subject of our study is FutzHugh-Hagumo model driven by additive noise in the region of transition from excitable regime to continuous spiking. We show how canard explosion influences characteristics of stochastic oscillations. In particular, there are two effects with varying noise intensity: frequency stabilization of noise-induced spikes and partial suppression of spike generation.

Key words: 
Acknowledgments: 
This work was supported in part by RFBR grants 04-02-16769 and INTAS 01-2061, and by Russian Ministry of Education grant A03-2.9-362.
Reference: 
  1. Anishchenko VS, Neiman AB, Moss F, Schimansky-Geier L. Stochastic resonance: noise-enhanced order. Phys. Usp. 1999;169(1):7-36. DOI: 10.1070/PU1999v042n01ABEH000444.
  2. Gang H, Ditzinger T, Ning CZ, Haken H. Stochastic resonance without external periodic force. Phys. Rev. Lett. 1993;71(6):807-810. DOI: 10.1103/PhysRevLett.71.807; Rарреl W-J, Strogatz SH. Stochastic resonance in ап autonomous system with а nonuniform limit cycle. Phys. Rev. E. 1994;50(4):3249-3250. DOI: 10.1103/physreve.50.3249.
  3. Pikovsky А, Kurth J. Coherence resonance in а noise-driven excitable systems. Phys. Rev. Lett. 1997;78(5):775-778. DOI: 10.1103/PhysRevLett.78.775.
  4. Shulgin BV, Neiman АВ, Anishchenko VS. Mean switching frequency locking in stochastic bistable systems driven by а periodic force. Phys. Rev. Lett. 1995;75(23):4157-4160. DOI: 10.1103/PhysRevLett.75.4157.
  5. Han SK, Yim TG, Postnov DE, Sosnovtseva ОМ. Interacting coherence resonance oscillators. Phys. Rev. Lett. 1999;83(9):1771-1774. DOI: 10.1103/PhysRevLett.83.1771.
  6. Wang X-J. Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to а chaostic saddle. Physica D. 1993;62(1-4):263-274. DOI: 10.1016/0167-2789(93)90286-A.
  7. Mochlis J. Canards in а surface oxidation reaction. Nonliner Science 2002;12(4):319-345. DOI: 10.1007/s00332-002-0467-3.
  8. Scott AC. The electrophysics of a nerve fiber. Rev. Mod. Phys. 1975;47(2):487-533. DOI: 10.1103/RevModPhys.47.487.
  9. Keener J, Sneyd J. Mathematical Physiology. Springer; 1998. 767 p. DOI: 10.1007/b98841.
  10. Makarov VA, Nekorkin VI, Velarde MG. Spiking behavior in а noise-driven system combining oscillatory and excitatory properties. Phys. Rev. Lett. 2001;86(15):3431-3434. DOI: 10.1103/physrevlett.86.3431.
  11. Nikitin NN, Razevig VD. Digital simulation of stochastic differential equations and error estimates. U.S.S.R. Comput. Math. Math. Phys. 1978;18(1):102–113. DOI: 10.1016/0041-5553(78)90011-3.
  12. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press; 1988. 994 p.
  13. Kramers НА. Brounian motion in а field of force and the diffusion model оf chemical reaction. Physica. 1940;7:284-304. DOI: 10.1016/S0031-8914(40)90098-2.
  14. Horikawa Y. Coherence resonance with multiple peaks in a coupled FitzHugh-Nagumo model. Phys. Rev. Е. 2001;64(3):031905. DOI: 10.1103/PhysRevE.64.031905.
  15. Izhikevich EM. Neural excitability, spiking and bursting. International Journal оf Bifurcations and Chaos. 2000;10(6):1171-1266. DOI: 10.1142/S0218127400000840.
Received: 
27.02.2003
Accepted: 
16.06.2003
Available online: 
06.12.2023
Published: 
31.12.2003