ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kurushina S. E., Gromova L. I., Maksimov V. V. Stochastic equations and Fokker–Planck equation for the order parameters in the study of the noise-induced spatial patterns dynamics. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 5, pp. 45-63. DOI: 10.18500/0869-6632-2011-19-5-45-67

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 221)
Language: 
Russian
Article type: 
Article
UDC: 
519.2, 517.957

Stochastic equations and Fokker–Planck equation for the order parameters in the study of the noise-induced spatial patterns dynamics

Autors: 
Kurushina Svetlana Evgenevna, Samara State University
Gromova Lidija Ivanovna, Samara National Research University
Maksimov Valerij Vladimirovich, Samara National Research University
Abstract: 

From the viewpoint of the order parameters concept spatial pattern formation in excitable fluctuating medium was researched analytically. The reaction–diffusion system in external noise was considered as a model of such medium. Stochastic equations for the unstable modes amplitudes (order parameters) and the dispersion equations for the average unstable modes amplitudes were received. Fokker–Planck equation for the order parameters was received. The developed theory allows studying noise–induced effects, including variation boundaries of ordering and disordering phase transitions in dependence on the parameters of external noise.

Reference: 
  1. Lindner B, Garcia-Ojalvo J, Neiman A, Schimansky-Geier L. Effects of noise in excitable systems. Physics Reports. 2004;392(6):321–424. DOI: 10.1016/j.physrep.2003.10.015.
  2. Garcia-Ojalvo J, Sancho JM. Noise in Spatially Extended Systems. New York: Springer Verlag; 1999. 307 p. DOI: 10.1007/978-1-4612-1536-3.
  3. Van den Broeck C, Parrondo JMR, Toral R. Noise–induced nonequilibrium phase transition. Phys. Rev. Lett. 1994;73(25):3395–3398. DOI: 10.1103/PhysRevLett.73.3395.
  4. Genovese W, Munoz MA, Sancho JM. Nonequilibrium transitions induced by multiplicative noise. Phys. Rev. E. 1998;57(3):R2495–R2498. DOI: 10.1103/PhysRevE.57.R2495.
  5. Landa PS, Zaikin AA, Schimansky-Geier L. Influence of additive noise on noise–induced phase transition on nonlinear chains. Chaos, Solitons & Fractals. 1998;9(8):1367–1372. DOI: 10.1016/S0960-0779(98)00069-1.
  6. Zaikin AA, Schimansky-Geier L. Spatial patterns induced by additive noise. Phys. Rev. E. 1998;58(4):4355–4360. DOI: 10.1103/PhysRevE.58.4355.
  7. Ibanes M, Garcia-Ojalvo J, Toral R, Sancho JM. Noise–induced phase separation: Mean-field results. Phys. Rev. E. 1999;60(4):3597–3605. DOI: 10.1103/physreve.60.3597.
  8. Haken H. Synergetics: An Introduction. Berlin: Springer; 1983. 390 p. DOI: 10.1007/978-3-642-88338-5.
  9. Kurushina SE. Analytical research and numerical simulation of contrast dissipative structures in the field of fluctuations of dynamical variables. Izvestiya VUZ. Applied Nonlinear Dynamics. 2009;17(6):125–138 (in Russian). DOI: 10.18500/0869-6632-2009-17-6-125-138.
  10. Horsthemke W, Lefever R. Noise-Induced Transitions: Theory and Applications in Physics, Chemistry and Biology. Berlin: Springer; 1984. 322 p. DOI: 10.1007/3-540-36852-3.
  11. Kurushina SE. Modeling the dynamics of spatially distributed systems of the "reaction-diffusion" type with external fluctuations. MD Thesis. Samara: SamSU; 2010. 190 p. (in Russian)
  12. Rytov SM. Introduction to Statistical Radiophysics. Moscow: Nauka; 1966. 485 p. (in Russian).
  13. Stratonovich RL. Nonlinear Nonequilibrium Thermodynamics. Berlin: Springer; 1992. 361 p. DOI: 10.1007/978-3-642-77343-3.
  14. Klyatskin VI. Stochastic Equations Through the Eye of a Physicist. Elsevier; 2005. 556 p.
  15. Stratonovich RL. Random Processes in Dynamical Systems. Moscow; Izhevsk: ICR; 2009. 592 p. (in Russian).
  16. Scheffer M. Fish and nutrients interplay determines algal biomass: A minimal model. OIKOS. 1991;62(3):271–282. DOI: 10.2307/3545491.
  17. Malchow H. Motional instabilities in prey–predator systems. J. Theor. Biol. 2000;204(4):639–647. DOI: 10.1006/jtbi.2000.2074.
  18. Malchow H. Spatiotemporal pattern formation in nonlinear non-equilibrium plankton dynamics. Proc. R. Soc. Lond. B. 1993;251(1331):103–109. DOI: 10.1098/rspb.1993.0015.
  19. Satnoianu RA, Menzinger M. Non-turing stationary patterns in flow-distributed oscillators with general diffusion and flow rates. Phys. Rev. E. 2000;62(1):113–119. DOI: 10.1103/PhysRevE.62.113.
  20. Satnoianu RA, Menzinger M, Maini PK. Turing instabilities in general systems. J. Math. Biol. 2000;41(6):493–512. DOI: 10.1007/s002850000056.
  21. Kurushina SE, Ivanov AA, Zhelnov YV, Zavershinskii IP, Maximov VV. Spatiotemporal pattern of prey-predator system simulation in external fluctuate environment. Mathematical Models and Computer Simulations. 2010;22(10):3–17 (in Russian).
  22. Kurushina SE, Ivanov AA. Dissipative structures of reaction–diffusion system simulation in multiplicative fluctuation phone. Izvestiya VUZ. Applied Nonlinear Dynamics. 2010;18(3):85–103 (in Russian). DOI: 10.18500/0869-6632-2010-18-3-85-103.
Received: 
29.07.2011
Accepted: 
29.07.2011
Published: 
30.12.2011
Short text (in English):
(downloads: 80)