ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Naplekov D. M., Tur A. V., Yanovsky V. V. Structurally complex boundary with specular­diffuse reflection indicatrix. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 4, pp. 55-65. DOI: 10.18500/0869-6632-2014-22-4-55-65

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 471)
Language: 
Russian
Article type: 
Article
UDC: 
535.92, 530.182

Structurally complex boundary with specular­diffuse reflection indicatrix

Autors: 
Naplekov Dmitrij Mihajlovich, Institute of Monocrystals of NAS of Ukraine
Tur Anatolij Valentinovich, Institut de Recherche en Astrophysique et Planetologie
Yanovsky Vladimir Vladimirovich, Institute of Monocrystals of NAS of Ukraine
Abstract: 

The way of modeling of specular­diffuse character of light reflection from real surfaces is proposed in the paper. Model of structurally complex reflecting boundary baseson the open billiards. Indicatrix of reflection from this surface for all angles of incidence consists only of specular pike and diffuse component. Dependence of the share of specular component on an angle of incidence may be any predefined function, its choice also defines the shape of diffuse component. It is shown, that generated by the surface indicatrix differs from the Lambert one and well coincides with experimentally observed indicatrixe of real surfaces.

Reference: 
  1. Lambert JH. Photometria sive de mensura et gradibus luminus, colorum et umbrae. Augsburg: Eberhard Klett; 1760. 144 p. (in German).
  2. Beckmann P, Spizzichino A. The Scattering of Electromagnetic Waves from Rough Surfaces. NY: Pergamon; 1963. 503 p.
  3. Torrance K, Sparrow E. Theory for off-specular reflection from roughened surfaces. J. Opt. Soc. Am. 1967;57(9):1105—1114. DOI: 10.1364/JOSA.57.001105.
  4. Oren M, Nayar SK. Generalization of the Lambertian model and implications for machine vision. Int. J. Comput. Vision. 1995;14(3):227—251. DOI: 10.1007/BF01679684.
  5. Ginneken B, Stavridi M, Koenderink JJ. Diffuse and specular reflectance from rough surfaces. Applied Optics. 1998;37(1):130—139. DOI: 10.1364/AO.37.000130.
  6. Wolff LB. Diffuse-reflectance model for smooth dielectric surfaces. J. Opt. Soc. Am. A. 1994;11(11):2956—2698. DOI: 10.1364/JOSAA.11.002956.
  7. Tuchin VV. Optical Biomedical Diagnostics. Vol. 1, 2. Moscow: Fizmatlit; 2007 (in Russian).
  8. Oliveira L, Carvalho MI, Nogueira E, Tuchin VV. The characteristic time of glucose diffusion measured for muscle tissue at optical clearing. Laser Phys. 2013;23(7):075606. DOI: 10.1088/1054-660X/23/7/075606.
  9. Globus ME, Gridnev BV. Inorganic Scintillators. Kharkiv: Akta; 2000. 409 p. (in Russian).
  10. Grinev BV, Naydenov SV, Yanovsky VV. On spectrometric laws of light collection in scintillation detectors. Reports of the Academy of Sciences of Ukraine. 2003;(4):88 (in Russian).
  11. Altmann EG, Portela JSE, Tel T. Leaking chaotic systems. Rev. Mod. Phys. 2013;85(2):869—918. DOI: 10.1103/RevModPhys.85.869.
  12. Nagler J, Krieger M, Linke M, Schonke J, Wiersig J. Leaking billiards. Phys. Rev. E. 2007;75(4):046204. DOI: 10.1103/PhysRevE.75.046204.
  13. Bauerand W, Bertsch GF. Decay of ordered and chaotic systems. Phys. Rev. Lett. 1990;65(18):2213—2216. DOI: 10.1103/PhysRevLett.65.2213.
  14. Naplekov DM, Tur AV, Yanovsky VV. Scattering by a boundary with complex structure. Phys. Rev. E. 2013;87(4):042901. DOI: 10.1103/PhysRevE.87.042901.
  15. Hope A, Hauer KO. Three-dimensional appearance characterization of diffuse standard reflection materials. Metrologia. 2010;47(3):295—304. DOI: 10.1088/0026-1394/47/3/021.
  16. Micolich AP, See AM, Scannell BC, Marlow CA, Martin TP, Pilgrim I, Hamilton AR, Linke H, Taylor RP. Is it the boundaries or disorder that dominates electron transport in semiconductor «billiards»? Fortschr. Phys. 2013;61(2–3):332—347. DOI: 10.1002/prop.201200081.
  17. Brunner R, Meisels R, Kuchar F, Akis R, Ferry DK, Bird JP. Classical and quantum dynamics in an array of electron billiards. Physica E. 2008;40(5):1315—1318. DOI: 10.1016/j.physe.2007.08.118.
  18. Naidenov SV, Yanovsky VV. Geometric-dynamic approach to billiard systems: I. Projective involution of a billiard, direct and inverse problems. Theoretical and Mathematical Physics. 2001;127(1):500—512. DOI: 10.1023/A:1010316025791.
  19. Naidenov SV, Yanovsky VV. Geometric-dynamic approach to billiard systems: II. Geometric features of involutions. Theoretical and Mathematical Physics. 2001;129(1):1408—1420. DOI: 10.1023/A:1012475713108.
  20. Toporets AS, Mazurenko MM. Diffuse reflection by a rough surface. J. Appl. Spectrosc. 1969;10(3):486.
Received: 
12.08.2014
Accepted: 
12.08.2014
Published: 
31.12.2014
Short text (in English):
(downloads: 121)