ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Torgashov R. A., Rozhnev A. G., Ryskin N. M. Study of the microstrip planar slow-wave structures for the millimeter-band vacuum microelectronics devices. Izvestiya VUZ. Applied Nonlinear Dynamics, 2025, vol. 33, iss. 5, pp. 731-747. DOI: 10.18500/0869-6632-003191, EDN: HHZBIR

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Full text PDF(En):
Language: 
Russian
Article type: 
Article
UDC: 
621.385.6
EDN: 

Study of the microstrip planar slow-wave structures for the millimeter-band vacuum microelectronics devices

Autors: 
Torgashov Roman Antonovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Rozhnev Andrej Georgievich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Ryskin Nikita Mikhailovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

The aim of this work is study of high-frequency characteristics of planar meander-line slow-wave structures on dielectric substrates for millimeter-band traveling-wave tubes with sheet electron beam.

The main method is numerical simulation of electromagnetic wave propagation processes in the mentioned structures using modern three-dimensional fully-electromagnetic finite-element and finite-difference software simulation packages.

Results. For the microstrip slow-wave structure in addition to the main slow-wave mode there are fast volume modes, which can prevent stable regimes of TWT-amplifier operation. The spatial parameters of the structure were optimized to suppress the volume modes in the operating frequency band. High values of the attenuation coefficient of the surface slow-wave modes are also the features of the system. The results of the simulation of the ohmic losses using different numerical methods are presented, their qualitative and quantitative comparison is carried out.

Conclusion. The high-frequency characteristics of miniaturized planar microstrip meander-line slow wave structures on a dielectric substrate are studied in detail. The effect of spatial parameters of the structure on the cut-off frequencies of volume and surface modes is investigated. The main methods of ohmic loss simulation are presented. It is shown that simulation using perturbation theory and time-domain simulation gives underestimated values of ohmic losses.

Acknowledgments: 
This study was carried out within the framework of the state task of Kotel’nikov Institute of Radioengineering and Electronics RAS.
Reference: 
  1. Gulyaev YV, Sinitsyn NI. Super-miniaturization of low-power vacuum microwave devices. IEEE Trans. Electron Devices. 1989;36(11):2742–2743. DOI: 10.1109/16.43782.
  2. Denisov GG, Glyavin MYu, Ginzburg NS, Zotova IV, Peskov NY, Savilov AV, Ryskin NM. Vacuum microwave electronics: development of terahertz frequency range. In: Panchenko VYa, editor.Terahertz Photonics and Optoelectronics. M.: RAS; 2024. 764 p. (in Russian).
  3. Potter BR, Scott AW, Tancredi JJ. High-power printed circuit traveling wave tubes. In: 1973 International Electron Devices Meeting. 1973, Washington, DC, USA. P. 521–524. DOI: 10.1109/ IEDM.1973.188775.
  4. Gulyaev YuV, Zhbanov I, Zakharchenko YuF, Nefedov IS, Sinitsyn NI, Torgashov GV. Planar slow-wave systems for miniature electrovacuum microwave devices. J. Commun. Technol. Electron. 1994;39(12):2049–2058.
  5. Ryskin NM, Rozhnev AG, Starodubov AV, Serdobintsev AA, Pavlov AM, Benedik AI, Torgashov RA, Torgashov GV, Sinitsyn NI. Planar microstrip slow-wave structure for lowvoltage V-band traveling-wave tube with a sheet electron beam. IEEE Electron Device Letters. 2018;39(5):757–760. DOI: 10.1109/LED.2018.2821770.
  6. Wang S, Aditya S, Xia X, Ali Z, Miao J. On-wafer microstrip meander-line slow-wave structure at Ka-band. IEEE Trans. Electron Devices. 2018;65(6):2142–2148. DOI: 10.1109/TED.2018.2798575.
  7. Wang S, Aditya S, Xia X, Ali Z, Miao J, Zheng Y. -band symmetric V-shaped meander-line slow wave structure. IEEE Transactions on Plasma Science. 2019;47(10):4650–4657. DOI: 10.1109/ TPS.2019.2940254.
  8. Wang Z, Du F, Li S, Hu Q, Duan Z, Gong H, Gong Y, Feng J. Study on an X-band sheet beam meander-line SWS. IEEE Transactions on Plasma Science. 2020;48(12):4149–4154. DOI: 10.1109/ TPS.2020.3035411.
  9. Socuellamos JM, Dionisio R, Letizia R, Paoloni C. Experimental validation of phase velocity and interaction impedance of meander-line slow-wave structures for space traveling-wave tubes. IEEE Transactions on Microwave Theory and Techniques. 2021;69(4):2148–2154. DOI: 10.1109/ TMTT.2021.3054913.
  10.  Guo G, Zhang T, Zeng J, Yang Z, Yue L, Wei Y. Investigation and fabrication of the printed microstrip meander-line slow-wave structures for D-band traveling wave tubes. IEEE Trans. Electron Devices. 2022;69(9):5229–5234. DOI: 10.1109/TED.2022.3192214.
  11.  Guo G, Jing Z, Qixiang Z, Tianzhong Z, Taifu Z, Pengyu L, HanBiao T, Yanyu W. Investigation and experiment of a novel chamfered V-shaped microstrip slow-wave structure for W-band traveling-wave tube. J. Infrared Milli. Terahz Waves. 2024;45:629–644. DOI: 10.1007/s10762- 024-00994-x.
  12.  Torgashov RA, Benedik AI, Ryskin NM. Study of miniaturized low-voltage backward-wave oscillator with a planar slow-wave structure. Izvestiya VUZ. Applied Nonlinear Dynamics. 2017;25(5):35–46. (in Russian). DOI: 10.18500/0869-6632-2017-25-5-35-46.
  13.  Zhao C, Aditya S, Wang S. A novel coplanar slow-wave structure for millimeter-wave BWO applications. IEEE Trans. Electron Devices. 2021;68(4):1924–1929. DOI: 10.1109/TED.2021. 3059435.
  14.  Ulisse G, Krozer V. -band traveling wave tube amplifier based on planar slow wave structure. IEEE Electron Device Letters. 2017; 38(1):126–129. DOI: 10.1109/LED.2016.2627602.
  15.  Zhao C, Aditya S. Planar Slow-Wave Structures: Applications in Traveling-Wave Tubes. Institute of Physics Publishing; 2024. 326 p. DOI: 10.1088/978-0-7503-5764-7.
  16.  Gong Y, Wang S. Planar Slow Wave Structure Traveling Wave Tubes. Design, Fabrication and Experiment. Institute of Physics Publishing, 2024. 188 p. DOI: 10.1088/978-0-7503-5452-3.
  17.  Ryskin NM, Torgashov RA, Starodubov AV, Rozhnev AG, Serdobintsev AA, Pavlov AM, Galushka VV, Bessonov DA, Ulisse G, Krozer V. Development of microfabricated planar slowwave structures on dielectric substrates for miniaturized millimeter-band traveling-wave tubes. J. Vac. Sci. Technol. B. 2021;39(1):013214. DOI: 10.1116/6.0000716.
  18.  Torgashov RA, Starodubov AV, Rozhnev AG, Ryskin NM. Research and development of traveling Wave tubes with planar microstrip slow-wave structures on dielectric substrates. J. Commun. Technol. Electron. 2022;67:1231–1236. DOI: 10.1134/S1064226922100138.
  19.  Nozhkin DA, Starodubov AV, Torgashov RA, Galushka VV, Kozhevnikov IO, Serdobintsev AA, Lebedev AD, Kozyrev AA, Ryskin NM. Laser micromachining of 2-D microstrip V-band meanderline slow wave structures. IEEE Trans. Electron Devices. 2025;72(1):453–458. DOI: 10.1109/ TED.2024.3507759.
  20.  RF Module User’s Guide, COMSOL Multiphysics® v. 5.6. 2020. Stockholm: COMSOL AB; 2020.
  21.  High Frequency Structure Simulator (HFSS). ANSYS Inc, Pittsburg, PA, USA [Electronic resource]. Available from: http://www.ansoft.com/products/hf/hfss/.
  22.  CST STUDIO SUITE [Electronic resource]. Available from: http://www.3ds.com/productsservices/simulia/products/cst-studio-suite.
  23.  Silin RA, Sazonov VP. Slow-Wave Structures. M.: Sovetskoe Radio; 1966. 632 p. (in Russian).
  24.  Trubetskov DI, Khramov AE. Lectures on Microwave Electronics for Physicists. Vol. 1. Moscow: Fizmatlit; 2003. 496 p. (in Russian).
  25.  Cutler CC. Instability in hollow and strip electron beams. J. Appl. Phys. 1955;27(9):1028–1029. DOI: 10.1063/1.1722535.
  26.  Nguyen KT, Pasour J, Antonsen TM, Larsen PB, Petillo JJ, Levush B. Intense sheet electron beam transport in a uniform solenoidal magnetic field. IEEE Trans. Electron Devices. 2009; 56(5):744–752. DOI: 10.1109/TED.2009.2015420.
  27.  Vainshtein LA. Electromagnetic waves. Moscow: Radio i Svyaz; 1988. 440 p. (in Russian).
  28.  Il`inskiy AS, Slepyan GYa. Oscillations and waves in a electordynamic structures with losses. Moscow: Moscow University Press; 1983. 232 p. (in Russian).
  29.  Hammerstad EO. Microstrip Handbook / ed. by Bekkadal F. Trondheim, Norway: Norwegian Inst. Technol. Publishing; 1985. 118 p.
Received: 
07.05.2025
Accepted: 
09.07.2025
Available online: 
14.07.2025
Published: 
30.09.2025