ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Varvarin E. M., Osipov G. V. Synchronization and desynchronization in ensembles of mobile agents. Izvestiya VUZ. Applied Nonlinear Dynamics, 2026, vol. 34, iss. 1, pp. 68-83. DOI: 10.18500/0869-6632-003199, EDN: LSIHYF

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
Russian
Article type: 
Article
UDC: 
53.043
EDN: 

Synchronization and desynchronization in ensembles of mobile agents

Autors: 
Varvarin Eugene Mikhailovich, Lobachevsky State University of Nizhny Novgorod
Osipov Grigorij Vladimirovich, Lobachevsky State University of Nizhny Novgorod
Abstract: 

The purpose of this work is to analyze the mechanisms of influence and destruction, as well as the characteristics of synchronous and asynchronous modes of behavior of ensembles (swarms) of interacting mobile agents moving according to chaotic phase trajectories of Rossler and Lorentz.

Methods. One of the main ways to obtain synchronous chaotic dynamics is the effect of chaotic phase synchronization - the process of establishing the same averaged frequency of oscillations and modulo limited phase difference in the presence of sufficiently strong coupling. Numerical integration methods of systems of differential equations are used for modeling and obtaining results.

Results. In the context of ensembles of interacting mobile agents whose motion trajectories obey the Rossler and Lorenz systems in chaotic regimes, the influence of different types of individualities on collective dynamics was considered. The possibility of organizing sequential and parallel action of agents and various topological configurations of the organization of a swarm of agents when choosing a uniformity structure was demonstrated. The duration of transient processes in a synchronous regime in ensembles of mobile agents
moving along the trajectories of the Rossler system in different regimes was considered. In addition, for cases of chaotic Rossler attractors, a method for swarm desynchronization using independent phase tuning was proposed.

Conclusion. The article demonstrates the ability to synchronize and desynchronize ensembles of mobile agents.
 

Acknowledgments: 
This work was supported by RSF grant №23-12-00180 (synchronization task) and project № 0729-2020-0036 of the Ministry of Science and Higher Education of the Russian Federation (desynchronization task).
Reference: 
  1. Liu Y, Bi M, Yuan T, Song J. Event-triggered consensus tracking for multiple agents with nonlinear dynamics. In: 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Nanjing, China 2018. P. 1055-1060. DOI: 10.1109/YAC.2018.8406527.
  2. Fujiwara N, Kurths J, Diaz-Guilera A. Synchronization in networks of mobile oscillators. Phys. Rev. E. 2011;83:025101. DOI: 10.1103/PhysRevE.83.025101.
  3. Gómez-Gardeñes J, Nicosia V, Sinatra R, Latora V. Motion-induced synchronization in meta-populations of mobile agents. Phys. Rev. E. 2013;87:032814. DOI: 10.1103/PhysRevE.87.032814.
  4. Perez-Diaz F, Zillmer R, Gro R. Control of synchronization regimes in networks of mobile interacting agents. Phys. Rev. Appl. 2017;7(5):054002. DOI: 10.1103/PhysRevApplied.7.054002.
  5. Wang J, Xu C, Feng J, Chen MZ, Wang X, Zhao Y. Synchronization in moving pulse-coupled oscillator networks. IEEE Trans. Circuits Syst. I. 2015;62(10):2544-2553. DOI: 10.1109/TCSI.2015.2477576.
  6. Uriu K, Ares S, Oates AC, Morelli LG. Dynamics of mobile coupled phase oscillators. Phys. Rev. E. 2013;87:032911. DOI: 10.1103/PhysRevE.87.032911.
  7. Mirollo RE, Strogatz SH. Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 1990;50:1645-1662. DOI: 10.1137/0150098.
  8. Prignano L, Sagarra O, Díaz-Guilera A. Tuning synchronization of integrate-and-fire oscillators through mobility. Phys. Rev. Lett. 2013;110:114101. DOI: 10.1103/PhysRevLett.110.114101.
  9. Janagal L, Parmananda P. Synchronization in an ensemble of spatially moving oscillators with linear and nonlinear coupling schemes. Phys. Rev. E. 2012;86:056213. DOI: 10.1103/PhysRevE.86.056213.
  10. Wang L, Chen G. Synchronization of multi-agent systems with metric-topological interactions. Chaos. 2016;26(9):094809. DOI: 10.1063/1.4955086.
  11. Sarkar S, Parmananda P. Synchronization of an ensemble of oscillators regulated by their spatial movement. Chaos. 2010;20(4):043108. DOI: 10.1063/1.3496399.
  12. Rosenblum MG, Pikovsky AS, Kurths J. Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 1996;76(11):1804-1807. DOI: 10.1103/PhysRevLett.76.1804.
  13. Perez-Diaz F, Zillmer R, Gro R. Firefly-inspired synchronization in swarms of mobile agents. In: Proceedings of the 14th International Conference on Autonomous Agents and MultiagentSystems (AAMAS 2015). 4-8 May, 2015, Istanbul, Turkey. P. 279-286.
  14. Kim B, Do Y, Lai YC. Emergence and scaling of synchronization in moving-agent networks with restrictive interactions. Phys. Rev. E. 2013;88(4):042818. DOI: 10.1103/PhysRevE.88.042818.
  15. Majhi S, Ghosh D, Kurths J. Emergence of synchronization in multiplex networks of mobile Rössler oscillators. Phys. Rev. E. 2019;99:012308. DOI: 10.1103/PhysRevE.99.012308.
  16. Wang L, Xue P, Kong Z, Wang X. Locally and globally exponential synchronization of moving agent networks by adaptive control. Journal of Applied Mathematics. 2013;2013:241930. DOI: 10.1155/2013/241930.
  17. Levin VA, Osipov GV. Controlling the motion of a group of mobile agents. Tech. Phys. Lett. 2016;42(3):298-301. DOI: 10.1134/S1063785016030251.
  18. Osipov GV, Hu B, Zhou C, Kurts J. Three types of transitions to phase synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 2003;91(2):024101. DOI: 10.1103/PhysRevLett.91.024101.
  19. Stankevich N. Stabilization and complex dynamics initiated by pulsed force in the Rössler system near saddle-node bifurcation. Nonlinear Dyn. 2024;112:2949-2967. DOI: 10.1007/s11071-023-09183-2.
  20. Rosenblum MG, Pikovsky AS, Kurths J. From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 1997;78:4193-4196. DOI: 10.1103/PhysRevLett.78.4193.
  21. Koronovskii AA, Moskalenko OI, Hramov AE. New universality type in chaotic synchronization of dynamic systems. JETP Lett. 2004;80(1):20-22. DOI: 10.1134/1.1800207.
  22. Osipov GV, Pikovsky AS, Rosenblum MG, Kurts J. Phase synchronization effects in a lattice of nonidentical Rössler oscillators. Phys. Rev. E. 1997;55(3):2353-2361. DOI: 10.1103/PhysRevE.55.2353.
  23. Varvarin EM, Osipov GV. Synchronization and motion control of an ensemble of mobile agents. Tech. Phys. Lett. 2024;50(13):39-42 (in Russian). DOI: 10.61011/TPL.2024.07.58724.19836.
  24. Osipov GV, Kurts J, Zhou C. Synchronization in Oscillatory Networks. Berlin: Springer; 2007. 370 p. DOI: 10.1007/978-3-540-71269-5.
Received: 
25.06.2025
Accepted: 
07.11.2025
Available online: 
13.11.2025
Published: 
30.01.2026