For citation:
Astakhov V. V., Shabunin A. V. Synchronization of chaotic oscillators by means of periodic modulation of the coupling coefficient. Izvestiya VUZ. Applied Nonlinear Dynamics, 1997, vol. 5, iss. 1, pp. 15-29. DOI: 10.18500/0869-6632-1997-5-1-15-29
Synchronization of chaotic oscillators by means of periodic modulation of the coupling coefficient
We investigate synchronization of oscillators with chaos by high frequency periodic modulation of the coupling coefficient. As models we use non—autonomous nonlinear oscillators and Chua’s self—oscillators coupled via а capacity. For the non—autonomous oscillators regions of stability of in—phase oscillations were determined both analytically and in numeric experiment. Phenomena of stabilization of synchronous motions in the self-oscillators were investigated by numeric experiments. Bosides low—dimensional systems we consider the spatial synchronization in а chain of coupled oscillators with periodic boundary conditions. The effect of synchronization is investigated in dependence on the number of elements in the chain. We show that spatial synchronization by parametric modulation of the coupling takes place only in chains of finite length.
- Yamada T, Fujisaka H. Stability theory оf synchronized motions in coupled-оscillator systems. Progr. Theor. Phys. 1984;69(1):32-47. DOI: 10.1143/ptp.69.32.
- Pikovsky AS. On the interaction оf strange attractors. Z. Phys. В-Condensed Matter. 1984;55:149-154. DOI: 10.1007/BF01420567.
- Afraimovich VS, Verichev NN, Rabinovich MI. Stochastic synchronization of oscillation in dissipative systems. Radiophys. Quantum. Electron. 1986;29(9):795-803. DOI: 10.1007/BF01034476.
- Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys. Rev. Lett. 1990;64(8):821-824. DOI: 10.1103/PhysRevLett.64.821.
- Anishchenko VS, Vadivasova TE, Postnov DE, Safonova MA. Forced and mutual sinchronization of chaos. Soviet J. Commun. Tech. Electron. 1991;36(2):338-351. (in Russian).
- De Sousa Viera MC, Lichtenberg AJ, Lieberman MA. Synchronization of regular аnd chaotic systems. Phys. Rеv. A. 1992;46(12):R7359-R7362. DOI: 10.1103/physreva.46.r7359.
- Rulkov NF, Volkovskii AR, Rodriguez—Lozano А, Del Rio E, Velarde MG. Mutual synchronization оf chaotic self—oscillators with dissipative coupling. Int. J. Bifurc. Chaos. 1992;2(3):669-676. DOI: 10.1142/S0218127492000781.
- Lai YC, Grebogi С. Synchronization оf chaotic trajectories using control. Phys. Rev. E. 1993;47(4):2357-2360. DOI: 10.1103/physreve.47.2357.
- Kocarev L, Shang A, Chua LO. Transitions in dynamical regimes by driving: A unified method оf control and synchronization оf chaos. Int. J. Bifurc. Chaos. 1993;3(2):479-483. DOI: 10.1142/S0218127493000386.
- Murali K, Lakshmanan M. Drive-response scenario оf chaos synchronization in identical nonlinear systems. Phys. Rev. E. 1994;49(6):4882-4885. DOI: 10.1103/PhysRevE.49.4882.
- Ushio T. Chaotic synchronization and controlling chaos based on contraction mappings. Phys. Lett. A. 1995;198(1):14-22. DOI: 10.1016/0375-9601(94)01015-m.
- Astakhov VV, Silchenko AN, Strelkova GI, Shabunin AV, Anishchenko VS. Control and sinchronization of chaos in a system of coupled generators. J. Commun. Tech. Electron. 1996;41(11):1323-1331. (in Russian).
- Lima R, Pettini М. Suppression of chaos by resonant parametric perturbations. Phys. Rev. A. 1990;41(2):726-733. DOI: 10.1103/physreva.41.726.
- Cicogna G, Fronzoni L. Effects оf parametric perturbations оn the onset оf chaos in the Josephson—junction model: Theory and analog experiments. Phys. Rev. A. 1990;42(4):1901-1906. DOI: 10.1103/physreva.42.1901.
- Fronzoni L, Giocondo M, Pettini M. Experimental evidence оf suppression оf chaos by resonant parametric perturbations. Phys. Rev. A. 1991;43(12):6483-6487. DOI: 10.1103/physreva.43.6483.
- Chacon R. Suppression of chaos by selective resonant parametric perturbations. Phys. Rev. E. 1995;51(1):761-764. DOI: 10.1103/physreve.51.761.
- Kapitsa PL. Dynamic stability of the pendulum at an oscillating suspension point. J. Exp. Theor. Phys. 1951;21(5):588-597. (in Russian).
- Kapitsa PL. Pendulum with vibrating suspension. Phys. Usp. 1951;44:7-20. DOI: 10.3367/UFNr.0044.195105b.0007. (in Russian).
- Arnold VI. Mathematical Methods of Classical Mechanics. N.Y.: Sprringer; 1989. 462 p. DOI: 10.1007/978-1-4757-2063-1.
- Chua LO, Komuro M, Matsumoto Т. The double scroll family. IEEE Trans. Circuits Syst. 1986;33(11):1072-1118. DOI: 10.1109/TCS.1986.1085869.
- Astakhov VV, Shabunin AV, Silchenko AN, Strelkova GI, Anishchenko VS. Nonlinear Dynamics of two Chua’s circuits coupled through a capacitance. J. Commun. Tech. Electron. 1997;42(3):294-301.
- 175 reads