ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Pavlova O. N., Pavlov A. N., Anisimov A. A., Nazimov A. I., Sosnovceva O. V. Synchronization of oscillations in the dynamics of ensembles of surface nephrons. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 1, pp. 14-24. DOI: 10.18500/0869-6632-2011-19-1-14-24

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 77)
Language: 
Russian
Article type: 
Article
UDC: 
57.087

Synchronization of oscillations in the dynamics of ensembles of surface nephrons

Autors: 
Pavlova Olga Nikolaevna, Saratov State University
Pavlov Aleksej Nikolaevich, Saratov State University
Anisimov Aleksej Aleksandrovich, Saratov State University
Nazimov Aleksej Igorevich, Saratov State University
Sosnovceva Olga Vladimirovna, Danmarks Tekniske Universitet
Abstract: 

Based on the analysis of experimental data we study the collective dynamics of ensembles from several tens nephrons located on a kidney surface. Using wavelet-analysis, the phenomenon of locking of instantaneous frequencies and phases is studied that is caused by the tubulo-glomerular feedback. It is shown that structural units of the kidney related to distinct nephron trees participate in clusters formation. The entrainment of frequencies and phases of oscillations for large groups of nephrons occurs only for some fragments of experimental data. It is stated that significant groups of nephrons placed in different areas of kidney surface demonstrate the phenomenon of in-phase synchronization.

Reference: 
  1. Блехман И.И. Синхронизация в природе и технике. М.: Наука, 1981.
  2. Ланда П.С. Автоколебания в системах с конечным числом степеней свободы. М.: Наука, 1980.
  3. Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн. М.: Наука, 1984.
  4. Анищенко В.С., Вадивасова Т.Е., Астахов В.В. Нелинейная динамика хаотических и стохастических систем. Саратов: Изд-во Саратовского университета, 1999.
  5. Пиковский A., Розенблюм М., Куртс Ю. Синхронизация. Фундаментальное нелинейное явление. М.: Техносфера, 2003.
  6. Balanov A., Janson N., Postnov D., Sosnovtseva O. Synchronization: From simple to complex. Berlin: Springer-Verlag, 2009.
  7. Абарбанель Г.Д.И., Рабинович М.И., Селверстон А., Баженов М.В., Хуэрта Р., Сущик М.М., Рубчинский Л.Л. Синхронизация в нейронных ансамблях // УФН. 1996. Т. 166, No 4. С. 363.
  8. Schafer C., Rosenblum M.G., Abel H.-H., Kurths J. Synchronization in the human cardiorespiratory system // Phys. Rev. E. 1999. Vol. 60. P. 857.
  9. Anishchenko V.S., Balanov A.G., Janson N.B., Igosheva N.B., Bordyugov G.V. Entrainment between heart rate and weak noninvasive forcing // Int. Journal of Bifurcation and Chaos. 2000. Vol. 10, No 10. P. 2339.
  10. Шмидт Р., Тевс Г. Физиология человека. М.: Мир, 1996.
  11. Layton H.E., Pitman E.B., Moore L.C. Limit-cycle oscillations and tubuloglomerular feedback regulation of distal sodium delivery // Am. J. Physiol. Renal Physiol. 2000. Vol. 278. F287.
  12. Marsh D.J., Sosnovtseva O.V., Mosekilde E., Holstein-Rathlou N.-H. Vascular coupling induces synchronization, quasiperiodicity, and chaos in a nephron tree // Chaos. 2007. Vol. 17. 015114.
  13. Leyssac P.P. Further studies on oscillating tubuloglomerular feedback responses in the rat kidney // Acta Physiol. Scand. 1986. Vol. 126. P. 271.
  14. Dilley J.R., Arendshorst W.J. Enhanced tubuloglomerular feedback activity in rats developing spontaneous hypertension» // Am. J. Physiol. Renal Fluid Electrolyte Physiol. 1984. Vol. 247. F672.
  15. Holstein-Rathlou N.-H., He J., Wagner A.J., Marsh D.J. Patterns of blood pressure variability in normotensive and hypertensive rats // Am. J. Physiol. Regul. Integr. Comp. Physiol. 1995. Vol. 269. R1230.
  16. Holstein-Rathlou N.-H., Leyssac P.P. TGF-mediated oscillations in the proximal intratubular pressure: differences between spontaneously hypertensive rats and Wistar-Kyoto rats // Acta Physiol. Scand. 1986. Vol. 126. P. 333.
  17. Yip K.-P., Holstein-Rathlou N.-H., Marsh D.J. Chaos in blood flow control in genetic and renovascular hypertensive rats // Am. J. Physiol. Renal Fluid Electrolyte Physiol. 1991. Vol. 261. F400.
  18. Yip K.-P., Marsh D.J., Holstein-Rathlou N.-H. Low dimensional chaos in renal blood flow control in genetic and experimental hypertension // Physica D. 1995. Vol. 80. P. 95.
  19. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Holstein-Rathlou N.-H. Bimodal oscillations in nephron autoregulation // Phys. Rev. E. 2002. Vol. 66. 061909.
  20. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Yip K.-P., Holstein-Rathlou N.-H., Marsh D.J. Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats // Am. J. Physiol. Renal Physiol. 2007. Vol. 293. F1545.
  21. Павлова О.Н., Павлов А.Н., Сосновцева О.В. Динамика малых групп взаимодействующих нефронов в норме и при почечной гипертонии // Известия вузов. Прикладная нелинейная динамика. 2010. Т. 18, No 6. С. 3.
  22. Fercher A.F., Briers J.D. Flow visualization by means of single-exposure speckle photography // Opt. Commun. 1981. Vol. 37. P. 326.
  23. Briers J.D., Webster S. Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow // J. Biomed. Opt. 1996. Vol. 1. P. 174.
  24. Frerichs K.U., Feuerstein G.Z. Laser Doppler flowmetry: a review of its application for measuring cerebral and spinal cord blood flow // Mol. Chem. Neuropathol. 1990. Vol. 12. P. 55.
  25. Zimnyakov D.A., Briers J.D., Tuchin V.V. Speckle technologies for monitoring and imaging of tissues and tissuelike phantoms // Handbook of Optical Biomedical Diagnostics PM107 / Ed. by V.V. Tuchin. Bellingham, WA: SPIE Press, 2002. P. 987.
  26. Zimnyakov D.A., Tuchin V.V. Laser tomography // Medical Applications of Lasers / Ed. by D.R. Vij and K. Mahesh. Boston, MA: Kluwer, 2002. P. 147.
  27. Yaoeda K., Shirakashi M., Funaki S., Funaki H., Nakatsue T., Abe H. Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry // Am. J. Ophthalmol. 2000. Vol. 129. P. 734.
  28. Dunn A.K., Bolay H., Moskowitz M.A., Boas D.A. Dynamic imaging of cerebral blood flow using laser speckle // Cereb. Blood Flow Metab. 2001. Vol. 21. P. 195.
  29. Mallat S.G. A wavelet tour of signal processing. New York: Academic Press, 1998.
  30. Addison P.S. The illustrated wavelet transform handbook: applications in science, engineering, medicine and finance. Philadelphia: IOP Publishing, 2002.
  31. Kaiser G. A friendly guide to wavelets. Boston: Birkhauser, 1994.  
  32. Короновский А.А., Храмов А.Е. Непрерывный вейвлетный анализ и его приложения. М.: Физматлит, 2003.
  33. Pavlov A.N., Makarov V.A., Mosekilde E., Sosnovtseva O.V. Application of waveletbased tools to study the dynamics of biological processes // Briefings in Bioinformatics. 2006. Vol. 7. P. 375.
  34. Павлов А.Н., Павлова О.Н., Сосновцева О.В. Взаимодействие ритмов в динамике структурных элементов почек // Известия вузов. Прикладная нелинейная динамика. 2007. Т. 15, No 2. С. 14.
  35. Павлов А.Н., Сосновцева О.В., Анисимов А.А., Павлова О.Н. Динамика почечного кровотока на микро и макроскопическом уровнях // Известия вузов. Прикладная нелинейная динамика. 2008. Т. 16, No 1. С. 3.  
Received: 
12.01.2010
Accepted: 
12.01.2010
Published: 
29.04.2011
Short text (in English):
(downloads: 44)