ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Pavlova O. N., Pavlov A. N., Anisimov A. A., Nazimov A. I., Sosnovceva O. V. Synchronization of oscillations in the dynamics of ensembles of surface nephrons. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 1, pp. 14-24. DOI: 10.18500/0869-6632-2011-19-1-14-24

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 88)
Article type: 

Synchronization of oscillations in the dynamics of ensembles of surface nephrons

Pavlova Olga Nikolaevna, Saratov State University
Pavlov Aleksej Nikolaevich, Saratov State University
Anisimov Aleksej Aleksandrovich, Saratov State University
Nazimov Aleksej Igorevich, Saratov State University
Sosnovceva Olga Vladimirovna, Danmarks Tekniske Universitet

Based on the analysis of experimental data we study the collective dynamics of ensembles from several tens nephrons located on a kidney surface. Using wavelet-analysis, the phenomenon of locking of instantaneous frequencies and phases is studied that is caused by the tubulo-glomerular feedback. It is shown that structural units of the kidney related to distinct nephron trees participate in clusters formation. The entrainment of frequencies and phases of oscillations for large groups of nephrons occurs only for some fragments of experimental data. It is stated that significant groups of nephrons placed in different areas of kidney surface demonstrate the phenomenon of in-phase synchronization.

  1. Blekhman II. Synchronization in Nature and Technology. Moscow: Nauka; 1981. 440 p. (in Russian).
  2. Landa PS. Self-Oscillations in Systems with a Finite Number of Degrees of Freedom. Moscow: Nauka; 1980. 360 p. (in Russian).
  3. Rabinovich MI, Trubetskov DI. Oscillations and Waves in Linear and Nonlinear Systems. Springer, Dordrecht; 1989. 578 p. DOI: 10.1007/978-94-009-1033-1.
  4. Anishchenko VS, Vadivasova TE, Astakhov VV. Nonlinear Dynamics of Chaotic and Stochastic Systems. Saratov: Saratov University Press; 1999. 367 p. (in Russian).
  5. Pikovsky A, Rosenblum M, Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Camridge University Press; 2003. 432 p.
  6. Balanov A, Janson N, Postnov D, Sosnovtseva O. Synchronization: From Simple to Complex. Berlin: Springer-Verlag; 2009. 426 p. DOI: 10.1007/978-3-540-72128-4.
  7. Abarbanel HD, Rabinovich MI, Selverston A, Bazhenov MV, Huerta R, Sushchik MM, Rubchinskii LL. Synchronisation in neural networks. Phys. Usp. 1996;39(4):337–362. DOI: 10.1070/PU1996v039n04ABEH000141.
  8. Schafer C, Rosenblum MG, Abel HH, Kurths J. Synchronization in the human cardiorespiratory system. Phys. Rev. E. 1999;60(1):857–870. DOI: 10.1103/physreve.60.857.
  9. Anishchenko VS, Balanov AG, Janson NB, Igosheva NB, Bordyugov GV. Entrainment between heart rate and weak noninvasive forcing. Int. J. Bifurcation Chaos. 2000;10(10):2339–2348. DOI: 10.1142/S0218127400001468.
  10. Schmidt R, Thews G. Human Physiology. Berlin: Springer; 1989. 827 p. DOI: 10.1007/978-3-642-73831-9.
  11. Layton HE, Pitman EB, Moore LC. Limit-cycle oscillations and tubuloglomerular feedback regulation of distal sodium delivery. Am. J. Physiol. Renal Physiol. 2000;278(2):F287–F301. DOI: 10.1152/ajprenal.2000.278.2.f287.
  12. Marsh DJ, Sosnovtseva OV, Mosekilde E, Holstein-Rathlou NH. Vascular coupling induces synchronization, quasiperiodicity, and chaos in a nephron tree. Chaos. 2007;17(1):015114. DOI: 10.1063/1.2404774.
  13. Leyssac PP. Further studies on oscillating tubuloglomerular feedback responses in the rat kidney. Acta Physiol. Scand. 1986;126(2):271–277. DOI: 10.1111/j.1748-1716.1986.tb07814.x.
  14. Dilley JR, Arendshorst WJ. Enhanced tubuloglomerular feedback activity in rats developing spontaneous hypertension». Am. J. Physiol. Renal Fluid Electrolyte Physiol. 1984;247(4):F672–F679. DOI: 10.1152/ajprenal.1984.247.4.f672.
  15. Holstein-Rathlou NH, He J, Wagner AJ, Marsh DJ. Patterns of blood pressure variability in normotensive and hypertensive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1995;269(5):R1230–R1239. DOI: 10.1152/ajpregu.1995.269.5.r1230.
  16. Holstein-Rathlou NH, Leyssac PP. TGF-mediated oscillations in the proximal intratubular pressure: differences between spontaneously hypertensive rats and Wistar-Kyoto rats. Acta Physiol. Scand. 1986;126(3):333–339. DOI: 10.1111/j.1748-1716.1986.tb07824.x.
  17. Yip KP, Holstein-Rathlou NH, Marsh DJ. Chaos in blood flow control in genetic and renovascular hypertensive rats. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 1991;261(3):F400–F408. DOI: 10.1152/ajprenal.1991.261.3.f400.
  18. Yip KP, Marsh DJ, Holstein-Rathlou NH. Evidence low dimensional chaos in renal blood flow control in genetic and experimental hypertension. Physica D. 1995;80(1–2):95–104. DOI: 10.1016/0167-2789(95)90063-2.
  19. Sosnovtseva OV, Pavlov AN, Mosekilde E, Holstein-Rathlou NH. Bimodal oscillations in nephron autoregulation. Phys. Rev. E. 2002;66(6):061909. DOI: 10.1103/PhysRevE.66.061909.
  20. Sosnovtseva OV, Pavlov AN, Mosekilde E, Yip KP, Holstein-Rathlou NH, Marsh DJ. Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats. Am. J. Physiol. Renal Physiol. 2007;293(5):F1545–F1555. DOI: 10.1152/ajprenal.00054.2007.
  21. Pavlova ON, Pavlov AN, Sosnovceva OV. Dynamics of small groups of interacting nephrons in normal and renal hypertension states. Izvestiya VUZ. Applied Nonlinear Dynamics. 2010;18(6):3–24 (in Russian). DOI: 10.18500/0869-6632-2010-18-6-3-24.
  22. Fercher AF, Briers JD. Flow visualization by means of single-exposure speckle photography. Opt. Commun. 1981;37(5):326–330. DOI: 10.1016/0030-4018(81)90428-4.
  23. Briers JD, Webster S. Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow. J. Biomed. Opt. 1996;1(2):174–179. DOI: 10.1117/12.231359.
  24. Frerichs KU, Feuerstein GZ. Laser Doppler flowmetry: a review of its application for measuring cerebral and spinal cord blood flow. Mol. Chem. Neuropathol. 1990;12(1):55–70. DOI: 10.1007/bf03160057.
  25. Zimnyakov DA, Briers JD, Tuchin VV. Speckle technologies for monitoring and imaging of tissues and tissuelike phantoms. In: Tuchin VV, editor. Handbook of Optical Biomedical Diagnostics PM107. Bellingham, WA: SPIE Press; 2002. P. 987–1036. DOI: 10.1117/3.2219608.ch8.
  26. Zimnyakov DA, Tuchin VV. Laser tomography. In: Vij DR, Mahesh K. Medical Applications of Lasers. Boston, MA: Kluwer; 2002. P. 147–194. DOI: 10.1007/978-1-4615-0929-5_5.
  27. Yaoeda K, Shirakashi M, Funaki S, Funaki H, Nakatsue T, Abe H. Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry. Am. J. Ophthalmol. 2000;129(6):734–739. DOI: 10.1016/s0002-9394(00)00382-2.
  28. Dunn AK, Bolay H, Moskowitz MA, Boas DA. Dynamic imaging of cerebral blood flow using laser speckle. Cereb. Blood Flow Metab. 2001;21(3):195–201. DOI: 10.1097/00004647-200103000-00002.
  29. Mallat SG. A Wavelet Tour of Signal Processing. New York: Academic Press; 1998. 805 p. DOI: 10.1016/B978-0-12-374370-1.X0001-8.
  30. Addison PS. The Illustrated Wavelet Transform Handbook: Applications in Science, Engineering, Medicine and Finance. Bristol; Philadelphia: IOP Publishing; 2002. 472 p.
  31. Kaiser G. A Friendly Guide to Wavelets. Boston: Birkhauser; 1994. 300 p. DOI: 10.1007/978-0-8176-8111-1.  
  32. Koronovskii AA, Khramov AE. Continuous Wavelet Analysis and Its Applications. Moscow: Fizmatlit; 2003. 176 p. (in Russian).
  33. Pavlov AN, Makarov VA, Mosekilde E, Sosnovtseva OV. Application of wavelet-based tools to study the dynamics of biological processes. Briefings in Bioinformatics. 2006;7(4):375–389. DOI: 10.1093/bib/bbl041.
  34. Pavlov AN, Pavlova ON, Sosnovceva OV. Interaction of rhythms in the dynamics of functional units of the kidney. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(2):14–28 (in Russian). DOI: 10.18500/0869-6632-2007-15-2-14-28.
  35. Pavlov AN, Sosnovceva OV, Anisimov AA, Pavlova ON. Dynamics of renal blood flow at micro- and macroscopic levels. Izvestiya VUZ. Applied Nonlinear Dynamics. 2008;16(1):3–18 (in Russian). DOI: 10.18500/0869-6632-2008-16-1-3-18. 
Short text (in English):
(downloads: 52)