ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Anishchenko V. S., Nikolaev S. M. Synchronization of two-frequency quasi-periodic oscillations. Izvestiya VUZ. Applied Nonlinear Dynamics, 2008, vol. 16, iss. 2, pp. 69-86. DOI: 10.18500/0869-6632-2008-16-2-69-86

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 185)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Synchronization of two-frequency quasi-periodic oscillations

Autors: 
Anishchenko Vadim Semenovich, Saratov State University
Nikolaev Sergej Mihajlovich, Saratov State University
Abstract: 

In present paper we study the effect of synchronization of two-frequency quasiperiodic oscillations. We analyze both external and mutual synchronization. The peculiarities of synchronization of a resonant limit cycle on a two-dimensional torus are established. It is shown that in general case, one and then another one of the basic frequencies is locked. The results of computer simulation are confirmed experimentally.

Key words: 
Reference: 
  1. Ruelle D, Takens F. On the nature of turbulence. Commun. Math. Phys. 1971;20(3):167–192. DOI: 10.1007/BF01646553.
  2. Newhouse S, Ruelle D, Takens F. Occurrence of strange axiom A attractors near quasi periodic flows on Tm, m ≥ 3. Commun. Math. Phys. 1978;64(1):35–40. DOI: 10.1007/BF01940759.
  3. Franceshini V. Bifurcations of tori and phase locking in a dissipative system of differential equations. Physica D. 1983;6(3):285–304. DOI: 10.1016/0167-2789(83)90013-1.
  4. Kaneko K. Collapse of Tori and Genesis of Chaos in Dissipative Systems. World Scientific, Singapore; 1986. 276 p. DOI: 10.1142/0175.
  5. Afraimovich VS, Shilnikov LP. Invariant tori, their destruction and stochasticity. In: Methods of the Qualitative Theory of Differential Equations: Interuniversity Subject Collection of Scientific Papers. Gorky: GSU Publishing; 1983. P. 3–26 (in Russian).
  6. Gonchenko SV, Sten’kin OV, Shilnikov LP. On the existence of infinitely many stable and unstable invariant tori for systems from Newhouse regions with heteroclinic tangencies. Russian Journal of Nonlinear Dynamics. 2006;2(1):3–25 (in Russian). DOI: 10.20537/nd0601001.
  7. Anishchenko V, Nikolaev S, Kurths J. Winding number locking on a two-dimensional torus: Synchronization of quasi-periodic motions. Phys. Rev. E. 2006;73(5):056202. DOI: 10.1103/PhysRevE.73.056202.
  8. Anishchenko V, Nikolaev S, Kurths J. Peculiarities of synchronization of a resonant limit cycle on a two-dimensional torus. Phys. Rev. E. 2007;76(4):046216. DOI: 10.1103/PhysRevE.76.046216.
  9. Anishchenko VS, Nikolaev SM, Kurths J. Synchronization mechanisms of resonant limit cycle on two-dimensional torus. Russian Journal of Nonlinear Dynamics. 2008;4(1):39–56 (in Russian). DOI: 10.20537/nd0801002.
  10. Anishchenko VS, Nikolaev SM. Experimental research of synchronization of two-frequency quasiperiodic motions. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(6):93–101 (in Russian). DOI: 10.18500/0869-6632-2007-15-6-93-101.
Received: 
26.02.2008
Accepted: 
26.02.2008
Published: 
30.04.2008
Short text (in English):
(downloads: 97)