ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Korchagin S. A., Terin D. V., Romanchuk S. P. Synergetics of mathematical models for analysis of composite materials. Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, iss. 3, pp. 55-64. DOI: 10.18500/0869-6632-2015-23-3-55-64

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 218)
Article type: 
544.032.52, 51-72

Synergetics of mathematical models for analysis of composite materials

Korchagin Sergej Alekseevich, Engels technological Institute (THE)
Terin Denis Vladimirovich, Engels technological Institute (THE)
Romanchuk Sergej Petrovich, Engels technological Institute (THE)

The authors propose a complex approach for the analysis of composite materials, including the fundamental models of the nonlinear dynamics, model of effective medium and the theory of electrical circuits. The composite consisting of spherical inclusions in the matrix is considered. The simulation of composite material is carried out by various methods.

  1. Nikitin A.S. Prospects for the use of composite materials // Business and Life. 2012. Jan. (No 4). P. 6. (In Russian)
  2. Tret’yakov Yu.D. Self-organization processes in the chemistry of materials // Russian Chemical Reviews. 2003, No 72 (8). S. 651.
  3. Vinogradov A.P. Electrodynamics of composite materials. M.: Editorial URSS, 2001. P. 208. (In Russian)
  4. The certificate of registration of the computer program No 2014615533 Russian Federation, The software package «Mathematical modeling and multi-criteria analysis of the nonlinear properties of composite materials based on the effective protection»: Applicant and patentee Romanchuk S.P., Terin D.V. No 2014612918/69; apr. 02.04.2014; reg. 28.05.2014. [1] s. (In Russian)
  5. Primachenko V.E., Kononets Ya. F., Bulah B.M., Venger E.V., Kaganovich E.B., Kizyak I.M., Kirillova S.I., Manoilov E.G., Tsyrkunov U.A. Electronic and radiative properties of porous silicon doped with gold // Semiconductor Physics and Technology. 2005. Vol. 39 (5). (In Russian)
  6. Pukinskii U.Zh., Filippov A.V. The equivalent circuit of a two-phase magnetostrictive – piezoelectric composites in the field of electromechanical resonance // Vestnik Novgorodskogo Gos. Universiteta, 2010, 55, s. 44. (In Russian)
  7. Poklonskiy N.A., Gorbаchuk N.I. Osnovy impedancnoi spectroscopii compositov: Lektsii. Minsk: BSU, 2005. S. 102. (In Russian)
  8. Butko L.N., Buchel’nikov V.D., Bychkov I.V. Absorption of electromagnetic waves in a nonmagnetic conductor–ferromagnet structure // Physics of the Solid State. 2010. Vol. 52. No 10. S. 2154.
  9. Walgraef D. Spatio-Temporal Pattern Formation. New York, 1997.
  10. Buchelnikov V.D., Louzguine-Luzgin D.V., Xie G., Li S., Yoshikawa N., Sato M., Anzulevich A.P., Bychkov I.V., Inoue A. Heating of metallic powders by microwaves: experiment and theory // J. of Applied Physics. 2008. 104. P. 113505-1-113505-10.
  11. Golovan’ L.A., Timoshenko V.I., Kashkarov P.K. Optical properties of porous-system-based nanocomposites // Physics-Usp. 2007. Vol. 50. P. 595.
  12. Kol’tsova E.M., Tret’yakov U.D., Gordeev L.S., Vertegel A.A. Nonlinear Dynamics and Thermodynamics of Irreversible Processes in Chemistry and Chemical Technology. M.: Khimiya, 2001. S. 193. (In Russian)
  13. Kuznetsov S.P. Dynamical chaos. M.: Fizmatlit, 2001. S. 80. (In Russian)
  14. Timashev S.F. et al. Evolution of Dynamical Dissipative Systems as a Temporal «Colour» Fractal // In: Mathematical Models of Non-Linear Excitations. New York, 1999. P. 17.
  15. Terin D.V., Korchagin S.A., Romanchuk S.P., Onosov I.A. Effect of depth fractal on the frequency dependence of impedance is in the construction of models of composite materials // Urgent problems of electronic instrument (APEP 2014): Proceedings of the International Scientific Conference: v.1, Saratov. 25–26 Sept 2014 – Saratov: Bukva, 2014. S. 258. (In Russian)
Short text (in English):
(downloads: 101)