ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Zimnyakov D. А., Tuchin V. V., Mishin A. A., Larin K. V. The correlation dimension of speckle fields for scattering structures with fractal properties. Izvestiya VUZ. Applied Nonlinear Dynamics, 1995, vol. 3, iss. 6, pp. 126-134. DOI: 10.18500/0869-6632-1995-3-6-126-134

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
535.36

The correlation dimension of speckle fields for scattering structures with fractal properties

Autors: 
Zimnyakov Dmitry Александрович, Yuri Gagarin State Technical University of Saratov
Tuchin Valerij Viktorovich, Saratov State University
Mishin Alexei Aleksandrovich, Saratov State University
Larin Kirill Vladimirovich, Saratov State University
Abstract: 

Various methods for determining the parameters of structural functions of phase distribution functions of the boundary field for scattering objects with fractal properties using coherent illuminating beams have been considered:

1. By analyzing the angular dependence of the mean value of the first derivative of the intensity of the scattered field with respect to the scattering angle;

2. By estimating the parameters of the structural function of the fluctuating component of the intensity of the scattered field in the far zone.

For the second case, it is shown that under normal distribution of the phase of the boundary field of scatterers, there is an equality of the values of the correlation exponents of the fluctuations of the phase of the boundary field and the intensity of the speckle field in the far zone when illuminating the object with a collimated beam and fulfilling the criterion of a large number of statistically independent elementary scatterers within the illuminated area.Experiments on the scattering of Gaussian beams on moving coarse glass plates showed a correspondence between the values of the correlation exponents of the fluctuations of the phase of the boundary field (according to the results of micro-interferometric measurements) and the intensity of the speckle field in the far zone.

Key words: 
Acknowledgments: 
The work was carried out within the framework of grant GR-71 'Development of the physical foundations of laser measurement systems with spatially modulated beams for the analysis of optically inhomogeneous objects' (program 'Physical Foundations of Measurement Systems').
Reference: 
  1. Рытов C.M., Кравцов Ю.А., Татарский В.И. Введение в статистическую радиофизику. Ч.2. Случайные поля. М.: Наука, 1978.
  2. Джейкмен Е. Рассеяние на фракталах. В кн.: Фракталы в физике. Труды VI международного симпозиума по фракталам в физике. М.: Мир, 1988. С.82.
  3. Ангельский O.B., Магун И.И., Максимяк И.П. и др. О возможностях оптической диагностики крупношероховатых поверхностей // Оптика и спектроскопия. 1991, T.71, № 6. C.1021. 
  4. Church EL. Fractal surface finish. Appl. Opt. 1988;27(8):1518-1526. DOI: 10.1364/AO.27.001518.
  5. Dainty JC. Laser speckle and related phenomena. Berlin: Springer: 1975. 288 p. DOI: 10.1007/978-3-662-43205-1.
  6. See CW, Appel RК, Somekh МG. Scanning differential optical profilometer for simultaneous measurement of amplitude and phase variation. Appl. Phys. Lett. 1988;53(1):10-12. DOI: 10.1063/1.100118.
  7. Лидбеттер M., Ротсен X., Линдгрен T. Экстремумы случайных последовательностей и процессов. М.: Мир, 1989.
  8. Зимняков Д.А., Тучин В.В., Утц С.Р. Исследование статистических свойств частично развитых спекл-полей применительно к диагностике структурных изменений кожи человека. Оптика и спектроскопия // 1994. T.76, № 5. С.838.
  9. Kadono H., Asakura T., Takai N. Roughness and correlation length measurements of rough surface objects using the speckle contrast in the diffraction field. Optik. 1988;80(3):115-120.
  10. Шустер Г. Детерминированный хаос: Введение. M.: Мир, 1988.
Received: 
05.04.1995
Accepted: 
31.07.1995
Published: 
21.11.1996