For citation:
Koronovskii A. A. The dynamics of the one-dimensional chain of logistic maps with the unidirectional threshold coupling. Izvestiya VUZ. Applied Nonlinear Dynamics, 1996, vol. 4, iss. 4, pp. 122-129.
The dynamics of the one-dimensional chain of logistic maps with the unidirectional threshold coupling
This article deals with the behaviour of the one-dimensional (semi-infinite or ring-shaped) chain of logistic maps connected with each other by the unidirectional threshold coupling. This type of coupling is radically new and its influence upon the chain processes results in the new type of dynamics that is unusual for chains of logistic maps with traditional types of coupling. It has been shown that the inserted exterior perturbation depending on chain parameters can damp, increase, spread without modifications along the chain and evolve to а stable space-time structure, namely, the solitary impulse. This one is not «stationary» for its profile is changed either periodically or chaotically during discrete time.
- Kaneko K. Theory and Applications of Coupled Map Lattices. Chichester: John Wiley and Sons; 1993. 191 p.
- Sharkovskii АN, Kolyada SF, Sivak АG, Felrenko VV. Dynamics of One-Dimensional Mappings. Kiev: Naukova Dumka; 1989. 216 p.
- Kuznetsov AP, Kuznetsov SP. Critical dynamics of one-dimensional mappings. Part I: Feigenbaum’s script. Izvestiya VUZ. Applied Nonliner Dynamics. 1993;1(1-2):15-33.
- Kuznetsov AP, Kuznetsov SP, Sataev IR. Critical dynamics of one-dimensional mappings. Part II. Two-parameter transition to chaos. Izvestiya VUZ. Applied Nonliner Dynamics. 1993;1(3-4):17-35.
- Kuznetsov AP, Kuznetsov SP. Critical dynamics of coupled-map lattices at onset of chaos (review). Radiophys. Quantum Electron. 1991;34(10-12):845-868. DOI: 10.1007/BF01083617.
- Kuznetsov SP. A renormalization-group analysis for two unidirectionally coupled Feigenbaum systems at the hyperchaos threshold. Radiophys. Quantum Electron. 1990;33(7):578-581. DOI: 10.1007/BF01048488.
- Kuznetsov AP, Kuznetsov SP, Sataev IR. Critical phenomena in Feigenbaum systems with one-way coupling. Radiophys. Quantum Electron. 1991;34(4):299-306. DOI: 10.1007/BF01080762.
- Kuznetsov SP. Scale-invariant structure of the space of parameters of connected Feigenbaum systems. Tech. Phys. 1985;55(9):1830-1834.
- Astakhov VV, Bezruchko BP, Gulyaev YuV, Seleznev EP. Multistable states of dissipatively bound Feygenbaum systems. Tech. Phys. Lett. 1989;15(3):60-65.
- Kuznetsov SP. On the critical behaviour of one-dimensional chains. Tech. Phys. Lett. 1983;9(2):94-98.
- Kuznetsov AP, Kuznetsov SP. Spatial structures in dissipative media at the threshold of chaos. Radiophys. Quantum Electron. 1991;34(2):124-128. DOI: 10.1007/BF01045518.
- Kaneko K. Spatiotemporal chaos in one— and two—dimensional coupled map lattices. Physica D. 1989;37(1-2):60-82. DOI: 10.1016/0167-2789(89)90117-6.
- Kaneko K. Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements. Physica D. 1990;41(2):137-172. DOI: 10.1016/0167-2789(90)90119-A.
- Astakhov VV, Bezruchko BP, Ponomarenko VN, Seleznev ЕP. Multistability and chaos in a closed chain of elements with period doubling (physical and numerical experiment) In: Lectures on microwave electronics and radio physics. 10th winter school-seminar. Vol. 2. Saratov: College; 1996. P. 51.
- Weidlich W. Stability and cyclicity in social systems. Syst. Research Behavioral Sci. 1988;33(4):241-256. DOI: 10.1002/BS.3830330402.
- Weidlich W. Physics and social science - the approach of synergetics. Phys. Rep. 1991;204(1):1-163. DOI: 10.1016/0370-1573(91)90024-G.
- Koronovskii AA, Trubetskov DI. Nonlinear Dynamics in Action. Saratov: College; 1995. 129 p.
- Scott A. Active and Nonlinear Wave Propagation in Electronics. N.Y.: Wiley; 1970. 326 p.
- Gardner М. Wheels, Life and Other Mathematical Amusements. N.Y.: WH Freeman; 1983. 261 p.
- Smith JМ. Models in Ecology. Cambridge: Cambridge University Press; 1978. 160 p.
- Kazuhiro S, Takashi А. Numerical study on а coupled— logistic map as а simple model for а predator—prey system. J. Phys. Soc. Jpn. 1990;59(4):1184-1198.
- Allen RGD. Mathematical Economics. London: Macmillan; 1956. 768 p.
- 162 reads