ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Bliokh Y. P., Ljubarskij M. G., Podobinsky V. O. The frequency control in one class of distributed systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 1995, vol. 3, iss. 4, pp. 12-22. DOI: 10.18500/0869-6632-1995-3-4-12-22

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
621.385

The frequency control in one class of distributed systems

Autors: 
Bliokh Yury Pavlovich, Israel Institue of Technology "Technion"
Ljubarskij M. G., National Science Center Kharkov Institute of Physics and Technology
Podobinsky Vitalii Olegovich, National Science Center Kharkov Institute of Physics and Technology
Abstract: 

The possibility of frequency control in the dynamical system with distributed pa- rameters is considered. The dynamical system is defined as the complex-valued map. The control is executed by monochromatic signal r(t) = rо ехр (ivt) that is added to the right part of the map. The interval of parameters r0, v, when the map has stable monochromatic solutions ~ exp (ivt), is defined. It is shown that two different mechanisms of monochromatic solution instability are connected with two dimensions of the map. The necessity of stabilization by external influence of both these mechanisms substantially restricts the interval of parameters, when the frequency control is possible. The possibility of connection amplitude threshold of frequency control (synchronization) and the degree of stochastization in the independent system are examined.

Key words: 
Acknowledgments: 
The authors consider it their pleasant duty to express their gratitude to Ya.B. Feinberg for fruitful discussions. The work is financed by the State Committee for Science and Technology of Ukraine (contract № 9.02.02/022).
Reference: 
  1. Ott E, Grebogi С, Yorke JA. Controlling chaos. Phys. Rev. Lett. 1990;64(11):1196-1199. DOI: 10.1103/PhysRevLett.64.1196.
  2. Fainberg YaB. A Survey of Phenomena in Ionized Gases. Vienna: International Atomic Energy Agency; 1968. 731 p.
  3. Bliokh YuP, Borodkin AV, Lyubarskii МG, Onishchenko IN, Fainberg YaB. Application of the functional mapping method for the study of a TWT generator with late feedback. Izvestiya VUZ. Applied Nonlinear Dynamics. 1993;1(1-2):34-49. (in Russian).
  4. Bliokh YuP, Fainberg YaB, Lyubarskii MG, Podobinskii VO. Preprint KFTI 94-4. Kharkov: KFTI; 1994. 31 р.
  5. Landa PS, Perminov SМ. Synchronisation of chaotic oscillations in the Mackey-Glass system. Radiophys. Quantum Electron. 1987;30(3):437-439. (in Russian).
  6. Kuznetsov YuI, Landa PS, Olkhovskii АF, Perminov SМ. The relationship between the amplitude threshold of synchronisation and entropy in stochastic auto-oscillation systems. Sov. Phys. Doklady. 1985;281(2):291-294. (in Russian).
  7. Dykman GI, Landa PS, Neymark YuI. Synchronizing the chaotic oscillations by external force. Chaos, Solitons & Fractals. 1991;1(4):339-353. DOI: 10.1016/0960-0779(91)90025-5.
  8. Feigenbaum MJ. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 1978;19(1):25-52. DOI: 10.1007/BF01020332.
  9. Rozhdestvenskii VV, Potapov VA. J. Commun. Tech. Electron. 1994;39(5):814.
Received: 
19.08.1994
Accepted: 
14.11.1995
Published: 
13.10.1996