ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kuznetsov A. P., Seleznev E. P., Stankevich N. V. The research of excited by external signal system of two coupled van der Pol oscillators at transition to the regime of amplitude death in the autonomous system. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 5, pp. 64-75. DOI: 10.18500/0869-6632-2011-19-5-68-75

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 119)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

The research of excited by external signal system of two coupled van der Pol oscillators at transition to the regime of amplitude death in the autonomous system

Autors: 
Kuznetsov Aleksandr Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Seleznev Evgeny Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Stankevich Natalija Vladimirovna, National Research University "Higher School of Economics"
Abstract: 

Pulsed driven system of two coupled van der Pol oscillators in the regime of synchronization 1:1 and «oscillator death» is researched. The existence of islands of quasi-periodic regimes on the parameter plane period – amplitude of perturbation in the radiophysics experiment are shown. The different types of oscillations in this system are illustrated.

Reference: 

  1. Pikosky A, Rosenblum M, Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge: Cambridge University Press; 2001. 411 p. DOI: 10.1017/CBO9780511755743.
  2. Landa PS. Self-Oscillations in Systems with a Finite Number of Degrees of Freedom. Moscow: Nauka; 1980. 360 p. (in Russian).
  3. Blekhman II. Synchronization of Dynamic Systems. Moscow: Nauka; 1971. 896 p. (in Russian).
  4. Glass L, Mackey M. From Clocks to Chaos. The Rhythms of Life. Princeton University Press; 1988. 272 p.
  5. Winfree A. The Geometry of Biological Time. New York: Springer-Verlag; 2001. 777 p. DOI: 10.1007/978-1-4757-3484-3.
  6. Anishchenko VS, Astakhov VV, Vadivasova TE, Strelkova GI. Synchronization of Regular, Chaotic and Stochastic Oscillations. Moscow; Izhevsk: Institute for Computer Research; 2008. 144 p. (in Russian).
  7. Kuramoto Y. Chemical Oscillations, Waves and Turbulence. Berlin: Springer; 1984. 164 p. DOI: 10.1007/978-3-642-69689-3.
  8. Kaneko K. Theory and Applications of Coupled Map Lattices. New York; 1993. 192 p.
  9. Bar-Eli K. Coupling of chemical oscillators. J. Phys. Chem. 1984;88(16):3616–3622. DOI: 10.1021/j150660a048.
  10. Bar-Eli K. On the stability of coupled chemical oscillators. Physica D. 1985;14(2):242–252. DOI: 10.1016/0167-2789(85)90182-4.
  11. Astakhov VV, Bezruchko BP, Seleznev EP. Change in the structure of the partition of the plane of parameters of a stochastic system upon excitation of an additional mode. Tech. Phys. Lett. 1987;13(8):449–452 (in Russian).
  12. Ermentrout GB, Kopell N. Oscillator death in systems of coupled neural oscillators. J. Appl. Math. 1990;50(1):125–146.
  13. Aronson DG, Ermentrout GB, Kopell N. Amplitude response of coupled oscillators. Physica D. 1990;41(3):403–449. DOI: 10.1016/0167-2789(90)90007-C.
  14. Mirollo RE, Strogatz SH. Amplitude death in array of limit-cycle oscillators. J. Stat. Phys. 1990;60(1–2):245–262. DOI: 10.1007/BF01013676.
  15. Ramana Reddy DV, Sen A, Johnston GL. Time delay induced death in coupled limit cycle oscillators. Phys. Rev. Lett. 1998;80(23):5109–5112. DOI: 10.1103/PhysRevLett.80.5109.
  16. Ramana Reddy DV, Sen A, Johnston GL. Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators. Phys. Rev. Lett. 2000;85(16):3381–3384. DOI: 10.1103/PhysRevLett.85.3381.
  17. Herrero M, Figueras M, Rius J, Pi F, Orriols G. Experimental observation of the amplitude death effect in two coupled nonlinear oscillators. Phys. Rev. Lett. 2000;84(23):5312–5315. DOI: 10.1103/PhysRevLett.84.5312.
  18. Atay M. Total and partial amplitude death in networks of diffusively coupled oscillators. Physica D. 2003;183(1–2):1–18. DOI: 10.1016/S0167-2789(03)00154-4.
  19. Prasad A. Amplitude death in coupled chaotic oscillators. Phys. Rev. E. 2005;72(5):056204. DOI: 10.1103/PhysRevE.72.056204.
  20. Karnatak R, Ramaswamy R, Prasad A. Amplitude death in the absence of time delays in identical coupled oscillators. Phys. Rev. E. 2007;76(3):035201. DOI: 10.1103/PhysRevE.76.035201.
  21. Prasad A, Dhamala M, Adhikari BM, Ramaswamy R. Amplitude death in nonlinear oscillators with nonlinear coupling. Phys. Rev. E. 2010;81(2):027201. DOI: 10.1103/PhysRevE.81.027201.
  22. Hou Z, Xin H. Oscillator death on small-world networks. Phys. Rev. E. 2003;68(5):055103. DOI: 10.1103/physreve.68.055103.
  23. Ozden I, Venkataramani S, Long MA, Connors BW, Nurmikko AV. Strong coupling of nonlinear electronic and biological oscillators: Reaching the «amplitude death» regime. Phys. Rev. Lett. 2004;93(15):158102. DOI: 10.1103/PhysRevLett.93.158102.
  24. Zhai Y, Kiss IZ, Hudson JL. Amplitude death through a Hopf bifurcation in coupled electrochemical oscillators: Experiments and simulations. Phys. Rev. E. 2004;69(2):026208. DOI: 10.1103/PhysRevE.69.026208.
  25. Kuznetsov AP, Paksyutov VI. On the dynamics of two van der Pol – Duffing oscillators with dissipative coupling. Izvestiya VUZ. Applied Nonlinear Dynamics. 2003;11(6):48 (in Russian).
  26. Kuznetsov AP, Roman JP, Seleznev EP. Synchronization in coupled self­sustained oscillators with non­-identical parameters. Izvestiya VUZ. Applied Nonlinear Dynamics. 2010;18(2):62–78 (in Russian). DOI: 10.18500/0869-6632-2010-18-2-62-78.
  27. Kuznetsov AP, Roman JP. Properties of synchronization in the systems of non-identical coupled van der Pol and van der Pol–Duffing oscillators. Broadband synchronization. Physica D. 2009;238(16):1499–1506. DOI: 10.1016/j.physd.2009.04.016.
  28. Osipov GV, Pikovsky AS, Rosenblum MG. Phase synchronization effects in a lattice of nonidentical Rossler oscillators. Phys. Rev. E. 1997;55(3):2353–2361. DOI: 10.1103/PhysRevE.55.2353.
  29. Resmi V, Ambika G, Amritkar RE. General mechanism for death in coupled systems. arXiv: 1101.5340. arXiv Preprint; 2011. 12 p.
  30. Emelyanova JP, Kuznetsov AP. Coupled self-­sustained oscillators of different nature by example of van der Pol system and brusselator. Izvestiya VUZ. Applied Nonlinear Dynamics. 2010;18(5):54–66 (in Russian). DOI: 10.18500/0869-6632-2010-18-5-54-66.
  31. Emel’yanova YP, Kuznetsov AP. Synchronization of coupled van der pole and Kislov-Dmitriev self-oscillators. Tech. Phys. 2011;56(4):435–442. DOI: 10.1134/S106378421104013X.
  32. Kozlowski J, Parlitz U, Lauterborn W. Bifurcation analysis of two coupled periodically driven Duffing oscillators. Phys. Rev. E. 1995;51(3):1861–1867. DOI: 10.1103/PhysRevE.51.1861.
  33. Kuznetsov AP, Stankevich NV, Tyuryukina LV. The effect of "extinction" of quasi-periodic regimes in a system of dissipatively coupled van der Pol oscillators with impulse action. Tech. Phys. Lett. 2008;34(15):22–27 (in Russian).
  34. Landa PS. Nonlinear Oscillations and Waves in Dynamical Systems. Dordrecht: Springer; 1996. 544 p. DOI: 10.1007/978-94-015-8763-1.
  35. Kuznetsov AP, Kuznetsov SP, Ryskin NM. Nonlinear Oscillations. Moscow: Fizmatlit; 2002. 292 p. (in Russian).
  36. Kuznetsov S.P. Dynamic Chaos. 2nd ed. Moscow: Fizmatlit; 2006. 355 p. (in Russian).
  37. Kuznetsov AP, Tyuryukina LV. Impulsive van der Pol oscillator: from flow to displays. Izvestiya VUZ. Applied Nonlinear Dynamics. 2001;(6):69 (in Russian).  
Received: 
11.05.2011
Accepted: 
07.10.2011
Published: 
30.12.2011
Short text (in English):
(downloads: 52)