ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Ginzburg N. S., Peskov N. Y., Baryshev V. R., Dorfman K. E., Zaslavsky V. Y., Malkin A. M., Rozental R. M., Sergeev A. S. The use of planar bragg structures for generation and amplification of coherent radiation from spatially-extended active media. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 4, pp. 43-70. DOI: 10.18500/0869-6632-2006-14-4-43-70

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 216)
Language: 
Russian
Article type: 
Review
UDC: 
517.958:537.874, 538.566, 621.385.633

The use of planar bragg structures for generation and amplification of coherent radiation from spatially-extended active media

Autors: 
Ginzburg Naum Samuilovich, Institute of Applied Physics of the Russian Academy of Sciences
Peskov Nikolai Yu., Institute of Applied Physics of the Russian Academy of Sciences
Baryshev Vladimir Rudolfovich, Institute of Applied Physics of the Russian Academy of Sciences
Dorfman Konstantin Evgenevich, Institute of Applied Physics of the Russian Academy of Sciences
Zaslavsky Vladislav Yurevich, Institute of Applied Physics of the Russian Academy of Sciences
Malkin Andrej Mihajlovich, Institute of Applied Physics of the Russian Academy of Sciences
Rozental Roman Markovich, Institute of Applied Physics of the Russian Academy of Sciences
Sergeev Aleksandr Sergeevich, Institute of Applied Physics of the Russian Academy of Sciences
Abstract: 

А number of novel possibilities of generation and amplification of spatially coherent radiation using planar Bragg structures is reviewed. In particular, we study schemes of Cherenkov oscillators with 2D distributed feedback, and a possibility of using this mechanism for synchronization of radiation of active laser media. Electronic amplifiers based on planar Bragg waveguides are discussed as well.

Key words: 
Reference: 
  1. Arzhannikov AV, Ginzburg NS, Peskov Nyu. e.a. FEL driven by high current ribbon REB and operated with two-dimensional feedback (conception and interim results). Abstracts 14th Int. FEL Conf., Kobe, Japan, 1992. P. 214.
  2. Ginzburg NS, Peskov NYu, Sergeev AS. Two-dimension double-periodic Bragg resonators for free-electron lasers. Opt. Comm. 1993;96(4-6):254–258. DOI: 10.1016/0030-4018(93)90271-6.
  3. Ginzburg NS, Peskov NYu, Sergeev AS. Electrodynamic properties of two-dimensional Bragg resonators. J. Comm. Technology Electron. 1995;40(5):8–21.
  4. Ginzburg NS, Peskov NYu, Sergeev AS. e.a. Theory and design of a free-electron maser with two-dimensional feedback driven by a sheet electron beam. Phys. Rev. E. 1999;60(1):935–945. DOI: 10.1103/physreve.60.935.
  5. Ginzburg NS, Peskov NYu, Sergeev AS, Arzhannikov AV, Sinitsky SL. Planar free-electron lasers with combined 1D/2D Bragg mirror resonators: A theoretical study. Tech. Phys. Lett. 2000;26(8):701–704.
  6. Ginzburg NS, Peskov NY, Sergeev AS, Arzhannikov AV, Sinitsky SA. Generation of spatially coherent radiation in free-electron lasers with two-dimensional distributed feedback. Radiophysics and Quantum Electronics. 2001;44(5-6):494—512.
  7. Ginzburg NS, Denisov GG, Kuzikov SV. et al. Specific features of mode spectrum of planar structures with two-dimensional bragg corrugation (theory and "cold" experiment). Radiophysics and Quantum Electronics. 2005;48(10-11):748—761.
  8. Arzhannikov AV, Ginzburg NS, Ivanenko VG. е.а. Radiation spectrum of planar FEM at different conditions of 2D distributed feedback realization. Proc. 6th Int. Workshop «Strong Microwaves in Plasmas», N.Novgorod, Russia, 2005. Vol. 1. P. 271.
  9. Konoplev IV, Cross AW, Ginzburg NS. e.a. Study of co-axial free electron maser based on two-dimensional distributed feedback. Proc. 6th Int. Workshop «Strong Microwaves in Plasmas», N.Novgorod, Russia, 2005. Vol. 1. P. 208.
  10. Kogelnik H, Shank CV. Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 1972;43(3):2327–2335. DOI: 10.1063/1.1661499.
  11. Yariv A. Quantum Electronics.New-York: John Wiley and Sons Inc.; 1975.
  12. Kovalev NF, Petelin MI, Reznikov MG. Resonator: USSR Patent No. 720592, 1980.
  13. Bratman VL, Denisov GG, Ginzburg NS, Petelin MI. FEL’s with Bragg reflection resonators: cyclotron auto-resonance maser versus ubitrons. IEEE J. Quant. Electr. 1983;9(19):282–296. DOI: 10.1109/JQE.1983.1071840.
  14. Ginzburg NS, Kuznetsov SP, Fedoseeva TN. Theory Of Transients In Relativistic Backward-Wave Tubes. Radiophysics and Quantum Electronics. 1978;21(7):728—739.
  15. Andreev AV. Optical superradiance: new ideas and new experiments. Phys. Usp. 1990;33(12):997–1020. DOI: 10.3367/UFNr.0160.199012a.0001.
  16. Ginzburg NS, Malkin AM, Peskov NYu. e.a. Improving selectivity of free electron maser with 1D Bragg resonator using coupling of propagating and trapped waves. Phys. Rev. ST-AB. 2005;8(4):040705. DOI: 10.1103/PhysRevSTAB.8.040705.
  17. Ginzburg NS, Malkin AM, Peskov NYu. Mode selection in FEL-oscillators based on coupling of propagating and trapped waves. Proc. 6th Int. Workshop «Strong Microwaves in Plasmas», N.Novgorod, Russia, 2005. Vol. 1. P. 233.
  18. Dann DA, Harman WA, Field LM, Kino GS. Theory of the Transverse-Current Traveling-Wave Tube. Proc. IRE. 1956;44(7):879–887. DOI: 10.1109/JRPROC.1956.275142.
  19. Zhurakhovsky VA. Nonlinear theory of the gyroresonance lamp of the transverse wave (giro-LPV). Radio Engineering and Electronic Physics. 1969;14(1):128.
  20. Bykov YuV, Gaponov AV, Petelin MI. To the theory of an MCR amplifier with a traveling wave and a transverse electron flow. Radiophysics and Quantum Electronics. 1974;17(8):1219—1223.
  21. Ginzburg NS, Peskov NYu, Sergeev AS. e.a. Mode competition and control in free electron devices with one and two dimensional Bragg resonators. IEEE Trans. on Plasma Science. 1996;24(3):770–780. DOI: 10.1109/27.533079 .
  22. Peskov NYu, Ginzburg NS, Denisov GG. e.a. Peculiarities of mode spectrum of planar 2D Bragg resonator (theory and experiment). Proc. 6th Int. Workshop «Strong Microwaves in Plasmas», N.Novgorod, Russia, 2005. Vol. 1. P. 321.
Received: 
28.06.2006
Accepted: 
28.06.2006
Published: 
29.09.2006
Short text (in English):
(downloads: 40)