ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Lavrova A. I., Pljusnina T. J., Riznichenko G. J. Transient states and self-oscillating modes along the cell membrane of algae Chara Corallina. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 6, pp. 21-30. DOI: 10.18500/0869-6632-2006-14-6-21-30

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 97)
Article type: 

Transient states and self-oscillating modes along the cell membrane of algae Chara Corallina

Lavrova Anastasija Igorevna, Lomonosov Moscow State University
Pljusnina Tatjana Jurevna, Lomonosov Moscow State University
Riznichenko Galina Jurevna, Lomonosov Moscow State University

Mathematical model of ion fluxes across the cell membrane of algae Chara corallina is developed. The transient processes and self-oscillating modes connected with potentialdependent transport of protons across the membrane are considered. Important role of these processes for plant cell is discussed.

Key words: 
  1. Tasaki I, Watanabe A, Hallett M. Fluorescence of squid axon membrane labelled with hydrophobic probes. J Membr Biol. 1972;8(2):109–132. DOI: 10.1007/BF01868097.
  2. Kohls OR, Maximov GV, Radenovich CN. Biophysics of rhythmic excitation. Moscow: MSU Publ.; 1993. 205 p. (In Russian).
  3. Spear DG, Barr JK, Barr CE. Localization of hydrogen ion and chloride ion fluxes in Nitella. J Gen Physiol. 1969;54(3):397–414. DOI: 10.1085/jgp.54.3.397.
  4. Smith FA, Walker NA. Chloride transport in Chara corallina and the electrochemical potential difference for hydrogen ions. Exp. Bot. 1976;27:451–459.
  5. Lucas WJ. Photosynthetic assimilation of exogenous НСОAnn. Rev. Plant Physiol. 1983;34(1):71–104. DOI:10.1146/annurev.pp.34.060183.000443.
  6. Lucas WJ, Dainty J. Spatial distribution of functional OH- carriers along a characean internodal cell: determined by the effect of cytochalasin B on H14CO3- assimilation. J Membr Biol. 1977;32(1-2):75–92. DOI: 10.1007/BF01905210.
  7. Fisahn J, Lucas WJ. Direct measurement of the reversal potential and current-voltage characteristics in the acid and alkaline regions of Chara corallina. Planta. 1992;186(2):241–248. DOI: 10.1007/BF00196254.
  8. Fisahn J, Lucas WJ. Spatial organization of transport domains and subdomain formation in the plasma membrane of Chara corallina. J Membr Biol. 1995;147(3):275–281. DOI: 10.1007/BF00234525.
  9. Bulychev AA, Cherkashin AA, Rubin AB, Muller S. Distribution of acid and alkaline zones on the cell surface of Chara corallina under stationary and local illumination. Russian Journal of Plant Physiology. 2002;49(6):715–722. DOI: 10.1023/A:1020950324700.
  10. Toko K, Hayashi K, Yoshida T, Fujiyoshi T, Yamafuji K. Oscillations of electric spatial patterns emerging from the homogeneous state in characean cells. Eur. Biophys. J. 1988;16(1):11–21. DOI: 10.1007/BF00255321.
  11. Toko K, Chosa H, Yamafuji K. Dissipative structure in the Characeae: Spatial pattern of proton flux as a dissipative structure in characean cells. J. Teor. Biol. 1985;114(1):127–175. DOI: 10.1016/S0022-5193(85)80260-5.
  12. Leonetti M, Pelce P. On the theory of pH bands in characean algae. C.R. Acad. Sci. Paris, Science de la vie/Life Sciences. 1994;317:801–805.
  13. Bulychev AA, Polezhaev AA, Zykov SV, Pljusnina TYu, Riznichenko GY, Rubin AB, Jantoss W, Zykov VS, Muller SC. Light-triggered pH banding profile in Chara cells revealed with a scanning pH microprobe and its relation to selforganization phenomena. J. Theor. Biol. 2001;212(3):275–294. DOI: 10.1006/jtbi.2001.2375.
  14. Fisahn J, McConnaughey T, Lucas WJ. Oscillations in extracellular current, external pH and membrane potential and conductance in the alkaline bands of Nitella and Chara. J. Exp. Bot. 1989;40(11):1185–1193. DOI: 10.1093/JXB/40.11.1185.
  15. Fisahn J, Mikschl E, Hansen UP. Separate oscillations of the electrogenic pump and of a K-channel in Nitella as revealed by simultaneous measurement of membrane potential and of resistance. J. Exp. Bot. 1986;37(1):34–47. DOI: 10.1093/JXB/37.1.34.
  16. Boels HD, Hansen UP. Light and electrical current stimulate the same feed-back system in Nitella. Plant Cell Physiol. 1982;23:343–346.
  17. Sanders D, Smith FA, Walker NA. Proton/chloride cotransport in Chara: mechanism of enhanced influx after rapid external acidification. Planta. 1985;163(3):411–418. DOI: 10.1007/BF00395151.
  18. Shartzer SA, Fisahn J, Lucas WJ. Simultaneous measurements of extracellular current and membrane potential of Chara corallina internodal cells during light-dependent modulation of H+ transport. C. R. Acad. Sci. Paris. 1992;315(3):247–254.
  19. Plyusnina TYu, Lavrova AI, Riznichenko GY, Rubin AB.Modeling the pH and transmembrane potential banding along the cell membrane of Alga Chara corallina. Biophysics. 2005;50(3):434–440.
  20. Lavrova AI, Plusnina TYu, Bulychev AA. et al. Modeling of hysteresis in pH pattern formation along the cell membrane of the algae Chara corallina. Biophysics. 2005;50(6):939–944.
  21. Felle H, Bertl A. Light-induced cytoplasmic pH changes and their interrelation to the activity of the electrogenic proton pump in Riccia fluitans. BBA. 1986;848(2):176–182. DOI: 10.1016/0005-2728(86)90039-3.
  22. Lucas WJ. Plasmalemma transport HCOand OH in Chara corallina: non-antiporter systems. J. Exp. Bot. 1976;27:19–31.
  23. Walker NA, Smith FA. Circulating electric current between acid and alkaline zones associated with HCO3 assimilation in Chara. J. Exp. Bot. 1977;28(5):1190–1206. DOI: 10.1093/JXB/28.5.1190.
Short text (in English):
(downloads: 42)