For citation:
Kuptsov P. V. Two-parameter analysis of chaos synchronization. Izvestiya VUZ. Applied Nonlinear Dynamics, 1999, vol. 7, iss. 6, pp. 42-50. DOI: 10.18500/0869-6632-1999-7-6-42-50
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language:
Russian
Article type:
Article
UDC:
517.9
Two-parameter analysis of chaos synchronization
Autors:
Kuptsov Pavel Vladimirovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract:
The problem of synchronization of chaotic systems with inertial and dissipative coupling is considered. There are many investigations of one—parameter synchronization. Introducing the additional channel of coupling and respectively the second parameter of coupling gives the opportunity to observe all known types of stability of synchronized chaotic regime — strong and week stability and strong and week instability. As an example the two-parameter analysis of synchronization of two skew tent maps is developed.
Key words:
Acknowledgments:
The author is grateful to S.P. Kuznetsov for useful discussion of the work and valuable comments.
This work was supported by the Russian Foundation for Basic Research, project №. 97-02-16414.
Reference:
- Fujisaka H, Yamada Т. Stability theory of synchronized motion in coupled оscillator systems. Progr. Theor. Phys. 1983;69(1):32-47. DOI: 10.1143/PTP.69.32.
- Pikovsky AS. On the interaction оf strange attractors. Z. Phys. В-Condensed Matter. 1984;55:149-154. DOI: 10.1007/BF01420567.
- Afraimovich VS, Verichev NN, Rabinovich MI. Stochastic synchronization of oscillations in dissipative systems. Radiophysics and Quantum Electronics. 1986;29(9):1050-1060. (in Russian).
- Ресоrа LM, Carroll TL. Synchronization in chaotic systems. Phys. Rev. Lett. 1990;64(8):821-824. DOI: 10.1103/PhysRevLett.64.821.
- Anishchenko VS, Vadivasova TE, Postnov DE, Safonova MA. Forced and mutual synchronization of chaos. Soviet Journal of Communication Technology and Electronics. 1991;36(2):338-351. (in Russian).
- Cuomo KM, Oppenheim AV. Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 1993;71(1):65-68. DOI: 10.1103/PhysRevLett.71.65.
- Rulkov NF. Images of synchronized chaos: Experiments with circuits. Chaos. 1996;6(3):262-279. DOI: 10.1063/1.166174.
- Platt N, Spiegel EA, Tresser С. On-Off intermittency: A mechanism for bursting. Phys. Rev. Lett. 1993;70(3):279-282. DOI: 10.1103/PhysRevLett.70.279.
- Ashwin Р, Buescu J, Stewart I. Bubbling of attractors and synchronization оf chaotic oscillators. Phys. Lett. А. 1994;193(2):126-139. DOI: 10.1016/0375-9601(94)90947-4.
- Alexander JC, Yorke JA, You Z, Kan I. Riddled basins. Int. J. Bifurc. Chaos. 1992;2(4):795-813. 10.1142/s0218127492000446.
- Ott E, Sommerer JC. Blowout bifurcations: the occurrence of riddled basins and on—off intermittency. Phys. Lett. А. 1994;188(1):39-47. DOI: 10.1016/0375-9601(94)90114-7.
- Kuznetsov SP. Universality and similarity in the behavior of related Feigenbaum systems. Radiophysics and Quantum Electronics. 1985;28(8):991-1007. (in Russian).
- Maistrenko Yu, Kapitaniak Т. Different types оf chaos synchronization in two coupled piecewise linear maps. Phys. Rev. E. 1996;54(4):3285-3292. DOI: 10.1103/PhysRevE.54.3285.
- Milnor J. On the concept оf attractor. Commun. Math. Phys. 1985;99:177-195. DOI: 10.1007/BF01212280.
- Heagy JF, Carrol TL, Pecora LM. Desynchronization by periodic orbits. Phys. Rev. E. 1995;52(2):1253-1256. DOI: 10.1103/PhysRevE.52.R1253.
- Rakhmanov Al. On an attractor of two coupled tent maps. In: Abstr. of DEBC. Kiev, Ukraine. 1994. P. 84.
- Maistrenko YuL, Maistrenko VL, Chua LO. Cycles of chaotic intervals in а time—delayed Chua’s circuit. Int. J. Bifurc. Chaos. 1993;3(6):1557-1572. DOI: 10.1142/S0218127493001215.
- Maistrenko VL, Maistrenko YuL, Sushko IM. Order for the appearance of attractors in families of piecewise linear maps. In: Kapitaniak T, Brindley J, editors. Chaos and Nonlinear Mechanics. Ser. B. Vol. 4. Singapore: World Scientific. 1994. P. 68-90.
- Nusse HE, Yorke JA. Border—collision bifurcations for piecewise smooth one—dimensional maps. Int. J. Bifurc. Chaos. 1995;5(1):189-207. DOI: 10.1142/S0218127495000156.
- Kuznetsov AP, Kuznetsov SP, Sataev IR. A variety of period—doubling universality classes in multi—parameter analysis of transition to chaos. Physica D. 1997;109(1-2):91-112. DOI: 10.1016/S0167-2789(97)00162-0.
- Pikovsky AS, Shekhov VG. Universal behaviour оf two coupled circle maps. J. Phys. A: Math. Gen. 1991;24(1):183. DOI: 10.1088/0305-4470/24/1/026.
Received:
06.07.1999
Accepted:
05.10.1999
Published:
01.02.2000
Journal issue:
- 339 reads