ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Shabunin A. V., Nikolaev S. M., Astakhov V. V. Two-parametric bifurcational analysis of formation and destruction of regimes of partial synchronization of chaos in ensemble of three discrete-time oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 6, pp. 40-55. DOI: 10.18500/0869-6632-2005-13-5-40-55

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 82)
Article type: 

Two-parametric bifurcational analysis of formation and destruction of regimes of partial synchronization of chaos in ensemble of three discrete-time oscillators

Shabunin Aleksej Vladimirovich, Saratov State University
Nikolaev Sergej Mihajlovich, Saratov State University
Astakhov Vladimir Vladimirovich, Yuri Gagarin State Technical University of Saratov

We invetsigate mechanisms of appearance and disappearance of regimes of partial synchronization of chaos in a ring of three logistic maps with symmetric diffusive coupling. Two-parametric bifurcational analysis is carried out and typical oscillating regimes and transitions between them are considered. Partial chaotic synchronization is revealed to lead to generalized synchronization. 

Key words: 
  1. Shabunin AV, Nikolaev SM, Astahov VV. Two-parametric bifurcational analysis of regimes of complete synchronization in ensemble of three discrete-time oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics. 2005;13(6):24–39 (in Russian). DOI: 10.18500/0869-6632-2005-13-5-24-39.
  2. Belykh VN, Belykh IV, Hasler M. Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems. Phys. Rev. E. 2000;62(5):6332–6345. DOI: 10.1103/physreve.62.6332.
  3. Pogromsky A, Santoboni G, Nijmeijer H. Partial synchronization: from symmetry towards stability. Physica D. 2002;172(1–4):65–87. DOI: 10.1016/S0167-2789(02)00654-1.
  4. Maistrenko Y, Popovych O, Hasler M. On strong and weak chaotic partial synchronization. Int. J. Bifurcat. Chaos. 2000;10(1):179–203. DOI: 10.1142/S0218127400000116.
  5. Yanchuk S, Maistrenko Y, Mosekilde E. Partial synchronization and clustering in a system of diffusively coupled chaotic oscillators. Mathematics and Computers in Simulation. 2001;54(6):491–508. DOI: 10.1016/S0378-4754(00)00276-7.
  6. Taborov AV, Maistrenko YL, Mosekilde E. Partial synchronization in a system of coupled logistic maps. Int. J. Bifurcat. Chaos. 2000;10(5):1051–1066. DOI: 10.1142/S0218127400000748.
  7. Tsukamoto N, Miyazaki S, Fujisaka H. Synchronization and intermittency in three-coupled chaotic oscillators. Phys. Rev. E. 2003;67(1):016212. DOI: 10.1103/PhysRevE.67.016212.
  8. Abarbanel HDI, Rulkov NF, Sushchik MM. Generalized synchronization of chaos: The auxiliary system approach. Phys. Rev. E. 1996;53(5):4528–4535. DOI: 10.1103/PhysRevE.53.4528.
  9. Anishchenko VS, Astakhov VV, Nikolaev VV, Shabunin AV. Chaotic synchronization in a network of symmetrically coupled oscillators. J. Commun. Technol. Electron. 2000;45(2):179–185.
  10. Shabunin A, Astakhov V, Kurths J. Quantitative analysis of chaotic synchronization by means of coherence. Phys. Rev. E. 2005;72(1):016218. DOI: 10.1103/PhysRevE.72.016218.
  11. Rosenblum MG, Pikovsky AS, Kurths J. From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 1997;78(22):4193–4196. DOI: 10.1103/PhysRevLett.78.4193.
Short text (in English):
(downloads: 65)