ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Shabunin A. V., Nikolaev S. M., Astakhov V. V. Two-parametric bifurcational analysis of formation and destruction of regimes of partial synchronization of chaos in ensemble of three discrete-time oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 6, pp. 40-55. DOI: 10.18500/0869-6632-2005-13-5-40-55

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 82)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Two-parametric bifurcational analysis of formation and destruction of regimes of partial synchronization of chaos in ensemble of three discrete-time oscillators

Autors: 
Shabunin Aleksej Vladimirovich, Saratov State University
Nikolaev Sergej Mihajlovich, Saratov State University
Astakhov Vladimir Vladimirovich, Yuri Gagarin State Technical University of Saratov
Abstract: 

We invetsigate mechanisms of appearance and disappearance of regimes of partial synchronization of chaos in a ring of three logistic maps with symmetric diffusive coupling. Two-parametric bifurcational analysis is carried out and typical oscillating regimes and transitions between them are considered. Partial chaotic synchronization is revealed to lead to generalized synchronization. 

Key words: 
Reference: 
  1. Shabunin AV, Nikolaev SM, Astahov VV. Two-parametric bifurcational analysis of regimes of complete synchronization in ensemble of three discrete-time oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics. 2005;13(6):24–39 (in Russian). DOI: 10.18500/0869-6632-2005-13-5-24-39.
  2. Belykh VN, Belykh IV, Hasler M. Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems. Phys. Rev. E. 2000;62(5):6332–6345. DOI: 10.1103/physreve.62.6332.
  3. Pogromsky A, Santoboni G, Nijmeijer H. Partial synchronization: from symmetry towards stability. Physica D. 2002;172(1–4):65–87. DOI: 10.1016/S0167-2789(02)00654-1.
  4. Maistrenko Y, Popovych O, Hasler M. On strong and weak chaotic partial synchronization. Int. J. Bifurcat. Chaos. 2000;10(1):179–203. DOI: 10.1142/S0218127400000116.
  5. Yanchuk S, Maistrenko Y, Mosekilde E. Partial synchronization and clustering in a system of diffusively coupled chaotic oscillators. Mathematics and Computers in Simulation. 2001;54(6):491–508. DOI: 10.1016/S0378-4754(00)00276-7.
  6. Taborov AV, Maistrenko YL, Mosekilde E. Partial synchronization in a system of coupled logistic maps. Int. J. Bifurcat. Chaos. 2000;10(5):1051–1066. DOI: 10.1142/S0218127400000748.
  7. Tsukamoto N, Miyazaki S, Fujisaka H. Synchronization and intermittency in three-coupled chaotic oscillators. Phys. Rev. E. 2003;67(1):016212. DOI: 10.1103/PhysRevE.67.016212.
  8. Abarbanel HDI, Rulkov NF, Sushchik MM. Generalized synchronization of chaos: The auxiliary system approach. Phys. Rev. E. 1996;53(5):4528–4535. DOI: 10.1103/PhysRevE.53.4528.
  9. Anishchenko VS, Astakhov VV, Nikolaev VV, Shabunin AV. Chaotic synchronization in a network of symmetrically coupled oscillators. J. Commun. Technol. Electron. 2000;45(2):179–185.
  10. Shabunin A, Astakhov V, Kurths J. Quantitative analysis of chaotic synchronization by means of coherence. Phys. Rev. E. 2005;72(1):016218. DOI: 10.1103/PhysRevE.72.016218.
  11. Rosenblum MG, Pikovsky AS, Kurths J. From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 1997;78(22):4193–4196. DOI: 10.1103/PhysRevLett.78.4193.
Received: 
15.07.2005
Accepted: 
15.07.2005
Published: 
28.02.2006
Short text (in English):
(downloads: 65)